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AUTHOR'’S PREFACE

EzPATH represents my attempt to make "causal' modeling
accessible and convenient, both for the beginning student and
advanced researcher. My hope is that, by providing a tool which
removes much of the mystique and tedium from the modeling
process, | will encourage people to think more clearly about basic
issues of scientific logic while engaging in that process.

Good science is founded on logic and clear communication.
Unfortunately, both these essentials tend to be placed on the shelf
when social scientists first import a multivariate methodology. There
is considerable evidence, from the history of factor analysis and
multidimensional scaling as well as causal modeling, that until a
certain "convenience level" is reached in implementing a new
multivariate analytic technique, users tend to be (1) overly
impressed by technical aspects (which they do not fully
understand) and (2) blinded, at least temporarily, to very basic
problems with the techniques. The result is that the tail wags the
dog, methodologically speaking, and papers demonstrably bereft
of any important scientific content are hustled into print because of
their "methodological sophistication.” Thirty years ago, an individual
could earn a Ph.D. simply by being able to generate a successful
factor analysis. Today individuals well versed in the vagaries of
covariance structure analysis programs enjoy high priest status in
many social science departments.

EzPATH, the PATH1 language and EzPATH diagramming
rules, are engineered to facilitate clear communication and to
promote more careful checking of causal modeling papers prior to
publication. In my teaching of causal modeling, | have encountered
a number of published papers which have obvious flaws which
would have been detected if the models in the papers had been
checked against the reported data. In some cases there were
errors or ambiguities in the path diagrams. In others the models
were not identified, or obvious variations on the published model fit
the data as well as or better than the published model did. Still
others had errors in the published correlation or covariance matrix.
Clearly, no reviewer asked the key questions (1) "Exactly what
model was fit to the data?", (2) "Does the mode! make sense?", (3)
“Do other equally sensible models fit the data equally well?", and (4)
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“Are the results correct?" One reason the questions were not asked
was that asking them would have involved too great an expenditure
of time. EzPATH makes it possible to answer these questions
relatively quickly.

| want to emphasize that this User’s Guide is not a textbook
on causal modeling, any more than the SYSTAT manual is a
textbook on statistics. For this reason, | concentrate on
presentation of a reasonably large number of examples from
previously published sources. These examples are presented
rather uncritically, although in some cases | cannot resist a
comment where | feel it is particularly appropriate.

| have strong personal views about what is right and what is
wrong with current causal modeling practice. | hope to present
these views soon, with the elaborate justification they require, in a
textbook. | have resisted the opportunity to present my views in
detail here, because they may be controversial, and | want EzPATH
to be evaluated on its own merits as a tool for social science
research.

The program does include a number of innovative features.
First, and most obvious, are the engineering features of the human
interface. Second, and perhaps more important, | have introduced
a noncentrality—based procedure for evaluation of model fit, which
includes confidence interval estimation methods. This approach
attempts to answer the key questions, "How good is model fit in the
population?" and "How precisely have we determined the quality of
model fit?" | introduced this approach in 1980, but it has been
largely ignored by my colleagues until now. | suspect that the
approach will become popular very quickly, as it offers obvious
merits.

The emphasis in EzPATH is on simplicity and functionality.
The program has its imperfections, and is still evolving. There are
features of competitive programs which EzPATH doesn't have —
and vice—versa.

The fact is, the vast majority of the causal models ever

published could have been analyzed with EzZPATH 1.0. In many
cases, EzPATH would have shortened the model setup time by an
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order of magnitude, saving hours of frustration and fatigue.
Moreover, some of the most significant (and currently unique)
statistical features of the program can add a new perspective to
previously published analyses.

| began writing EzPATH primarily for my students. It has
enabled me to take a different approach to teaching causal
modeling, one which frees more time for substantive issues. | hope
that you find the program useful and convenient. Please don’t

hesitate to write to me with suggestions or criticisms. Il try my best
to respond to them.

James H. Steiger
Department of Psychology
University of British Columbia

Vancouver, B.C., Canada V6T 1Y7
May, 1989
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1. Introduction

EzPATH is a user—friendly, interactive program for performing
analysis of covariance structures, including techniques commonly
referred to as "causal modeling," "confirmatory factor
analysis","structural modeling," and "path analysis."

EzPATH is designed to enable the researcher who is not
necessarily an expert in advanced multivariate methods to
perform structural modeling procedures quickly, easily, and
accurately, while also providing power, efficiency, and time—
saving features which will appeal to the experienced causal
modeler.

Major new features in EzPATH include:

Introduction of the PATH1 computer language for conveying
path diagrams to and from the computer. The PATH1
language allows path diagrams to be entered into a line file
in a format which closely matches the diagram itself. The
language mimics the diagram so closely that entering a
model correctly is almost trivial. Moreover, the PATH1
language also serves as a medium for presenting output
from the statistical estimation process. Hence, one can take
the results from one analysis, modify them, and use them as
input for the next analysis.

Fuil compatibility with the SYSTAT system, including use of
the integrated FEDIT facility for quick revision of input and for
inserting comments into output. EzZPATH reads variable
names directly from the SYSTAT file. There is no need to
type in lists of variable names. You can switch back and forth
between EzPATH and other SYSTAT modules.

Simplified, interactive operation. Models which take hours to
set up on other programs can be entered in minutes with
EzPATH. The program allows models to be entered
interactively with syntax checking. Many model errors are
flagged immediately on entry, and recovery from errors is
extremely fast and easy.
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Advanced statistical features. Other programs offer
goodness of fit indices which are sample statistics with no
statistical rationale. EzPATH provides a statistical rationale
for assessing goodness of fit. It defines and calculates a
number of new coefficients, as well as statistically —based
variants of some old ones. In particular, EzZPATH provides a
confidence interval for the population equivalent of the GFI
indices calculated by LISREL VL.

Advanced program logic. The program does the work, not
you! For example:

There is no need to learn a complicated system of
variable and matrix types. Extensive experience with
matrix algebra is not required to use the program —
EzPATH does most of the work. It creates an internal
algebraic model, analyses the model, and reports
results in the PATH1 language.

You can use manifest variable names up to 8
characters long in EzPATH. You can use your own

names. There is no restriction to use of names like "F1",

"X1", etc. Latent variable names can be up to 20
characters long.

There is no need to re—number coefficients after
modifying a model. Suppose you have typed a path
model into EzPATH with 12 unknowns, labelled 1—-12.
You analyze the model, then decide to modify it to
eliminate the path with unknown number 7. This path
can simply be erased.

A number of automatic model—generation commands
greatly reduce the amount of typing necessary to
create EzPATH input.

For example, factor analysis model command files can
be generated automatically. EzPATH has a command
called FACTORMODEL which allows you to construct,
automatically, the PATH1 commands corresponding to
a common factor model. If you have factor analyzed

© 1989, SYSTAT, Inc.
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some data previously with the FACTOR module and
have the factor pattern in a SYSTAT data file, EzPATH
will automatically incorporate the numerical results as
starting values. This feature provides the user with
substantial benefits: (i) Confirmatory factor models can
be constructed, tested, and modified very rapidly with
almost no typing; (ii) The user can get a head start on
typing the "measurement model" for many path
models.

There is no need to classify or order manifest variables
into exogenous and endogenous types. Some
programs require you to classify manifest variables into
X and Y types. Others require explicit lists of variable
names. EzPATH does not require manifest or latent
variables to be ordered or classified.



2. EzPATH Installation

BACKUP YOUR DISKETTES!
EZPATH is not copy protected. Before performing any tests
with the program, piease backup your disks! This is a very
simple process. Take the EZPATH diskettes, place write —
protect tabs on them, and follow the instructions below.

If you have a hard disk system, place the EzPATH disk in
drive A: and type

DISKCOPY A: A:
then follow the prompts.

If you have a floppy—based system, place the DOS disk in
drive A: and type

DISKCOPY A: A:
When prompted to insert the source disk in drive A:, insert
the EzPATH disk to be copied in drive A:, then press any key
1o start the diskcopy process.

INSTALL EZPATH IN YOUR SYSTAT DIRECTORY

Place the distribution diskette in either drive A: or drive B:
Type

A: [or B: if the diskette is in drive B:]
followed by a carriage return. Then type
INSTALL
START THE PROGRAM
Select the SYSTAT directory, and type

EZPATH

© 1989, SYSTAT, Inc.

3. A Brief Tutorial Exercise

(Note: Throughout the exercise, we assume that the user is
already familiar with SYSTAT, and, in particular, the FEDIT file
editing facility. Users unfamiliar with FEDIT should study carefully
the documentation and tutorial on pages 11—20 of the SYSTAT
installation guide. Remember that EzPATH, like all SYSTAT
modules, includes an on—line help facility. Simply type HELP if
you need it.) EzZPATH is designed to allow the fast entry of
structural models directly from a path diagram. This can be
especially useful when one is attempting to replicate a published
structural model, because often authors use only the path
diagram to convey their models. Path diagrams occur in the
scientific literature in a number of notational variations. Within this
manual, we will adopt strict conventions and adhere to them,
although we will also discuss some notational variations that are in
wide use.

EzPATH introduces a new computer language, PATH1, which is
especially designed to facilitate communication of path diagrams
both to and from a computer. Because it relies on standard ASCII
characters, and is line oriented, PATH1 allows structural equation
models to be recorded unambiguously in a way which maintains
efficiency without sacrificing portability.

Consider the structural diagram in Figure 1. This diagram
represents a common factor model, with 2 common factors
defined on 6 observed (i.e., "manifest") variables. We’ll use this
model to introduce some terminology which we will be using
consistently throughout the manual. Here are the key terms.

A. ARROW
A line with an arrowhead on one end. Within EzPATH, we
simulate an arrow with the PATH1 programming language
by two dashes with an arrowhead on one end. The dashes
may, depending on circumstances, have material between
them.

© 1989, SYSTAT, Inc. 5



Figure 1. A Common Factor Model.

Examples.

-—
-1->
-2{0.65)->

Arrows are used in structural diagrams to indicate a linear
relationship between two variables. The "flow of causality" (in
the loose sense employed in the causal modeling literature)
is to the variable pointed to by the arrowhead.

B. ARROWHEAD
The ">" character

C. ARROWLINE
The straight line part of an arrow.

© 1989, SYSTAT, Inc.
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D. DIRECTED RELATIONSHIP
A relationship between two variables connected by an arrow.

The variable pointed to by the arrow is the dependent
variable in the linear relationship, and appears on the left
side of the "="in the linear equation. The variable pointed
from is the independent variable in the linear relationship,
and appears on the right side of the "=" sign. In EzPATH, it is
not necessary to construct any linear equations, nor is it
necessary to know how to construct them to use the
program.

In Figure 1, for example, there is a directed relationship
between latent variable F1 and manifest variable X1.

E. WIRE
In Figure 1 there is a line connecting variables F1 and F2.
This line has no arrowhead on either end. We will refer to
such a line, for simplicity, as a "wire" throughout this manual.
A standard convention in many path diagrams is to present
such lines with arrowheads at both ends (Jack McArdle calls
these two—headed arrows "slings"). Obviously, lines with no
arrowheads can serve the same function as two—headed
arrows, with less visual clutter. Moreover, it turns out that
using wires instead of "slings" is a physically more efficient
way of communicating a key aspect of any path diagram,
i.e., which variables are exogenous. We will employ wires
rather than "slings" throughout this manual.

F. UNDIRECTED (VARIANCE - COVARIANCE)

RELATIONSHIP
"Wires" are used to indicate variances and covariances. In a
proper path diagram, only exogenous variables will be
"wired together," i.e., have wires connecting them. Some
authors refer to variances and covariances indicated in this
fashion as "undirected" relationships. The wire between
latent variables F1 and F2 in Figure 1 represents an
undirected relationship between them (i.e., their covariance).

G. MANIFEST VARIABLE



Manifest variables are variables which have been measured
directly, and for which observed data are available. Names
of these variables are recorded in the SYSTAT *.SYS file
being analyzed. Manifest variables will be represented in all
path diagrams in this book by a variable name enclosed
within a box. In the PATH1 language, we will represent such
variables with a variable name enclosed within square
brackets.

Examples.

[(x1]
[ANXIETY]

H. LATENT VARIABLE
Latent variables have not been observed directly. They are
represented in EzPATH diagrams by the variable name
enclosed within an oval or circle. For example, in Figure 1
the common factor F1 is a latent variable.

in the PATH1 language, latent variables are represented with
a variable name enclosed within parentheses (i.e., rounded
brackets). The PATH1 language statement

(U1)-->[X1]

shows an arrow directed from latent variable U1 to manifest
variable X1.

I. EXOGENOUS VARIABLE
Any variable with no arrow pointing to it.

J. ENDOGENOUS VARIABLE
Any variable with at least one arrow pointing to it.

K. STRUCTURAL COEFFICIENT
One way of viewing a path diagram is that it is a pictorial
representation of a set of linear equations. In particular, a
linear equation Y = aX is represented in the form

[X]-a->[Y]

© 1989, SYSTAT, Inc.

© 1989, SYSTAT, Inc.

The weighting coefficients in the linear equations are written
in our path diagrams (and, indeed, in most variations of such
diagrams) in the middle of the arrow connecting the
independent and dependent variables. Such coefficients are
frequently referred to as "structural coefficients."

L. FREE PARAMETER
When we test structural models, structural coefficients are
sometimes fixed at a particular numerical value (often 1 or 0).
More often, however such coefficients are free to vary, and
are estimated by the model—fitting procedure. We refer to
such coefficients as "free parameters.”

M. PARAMETER NUMBER
For purposes of identification, free parameters in our path
diagrams, and within EzPATH, are assigned parameter
numbers. These numbers may be thought of as labels. If two
structural coefficients are assigned the same parameter
number, then they will be assigned the same numerical
value during iteration of the solution and in the final fitted
model. In this situation, some authors refer to the parameters
as "constrained."

N. FIXED VALUE
A structural coefficient which is fixed at a particular numerical
value, most commonly zero or one. In our diagrams,
coefficients which are fixed will have no parameter number

. (implicitly a parameter number of zero). Fixed values can be
distinguished from parameter numbers, because the latter
will always be integers, while the former will always contain
decimal points. In the PATH1 language, fixed values are
given in braces, with no parameter number preceding the
braces. The example below shows a path with a fixed
coefficient of .5.

(F2)-{0.5}~>[X5]



O. START VALUE
The value assigned to a free parameter at the beginning of
iteration. The default starting value is .50. If you wish to
assign other values, they are given in braces immediately
following the parameter number. For example, the statement
below shows a path from variable F to variable X3, with the
coefficient number 2 being assigned a starting value of .45.

(F)-2{0.45}~>[X3]

Having introduced our basic terminology we are ready to proceed
with a numerical example. Figure 2 presents a path diagram of a
common factor model in which a single common factor and 4
unique factors reproduce 4 observed variables. This simple
diagram illustrates a number of features of our path diagrams
which we will attempt to hold constant throughout this manual.

Figure 2. A Single Common Factor Model.

The common factor F is an "exogenous latent" variable which
loads on 4 "endogenous manifest" variables — — X1, X2, X3, X4.
Note that the manifest variables are represented by the variable
names in a rectangular box, while the latent variables are in ovals.

10 © 1989, SYSTAT, Inc.

The general convention in structural diagrams is to represent all
variances and covariances among exogenous variables, unless
the variance is 1 or the covariance 0. We will follow that
convention for latent exogenous variables in our diagrams.

Hence, the latent exogenous variables F,U1,U2,U3,and U4 can be
assumed to be uncorrelated with variances of 1. In our diagrams,
we will use a somewhat unusual convention for manifest
exogenous variables. We will require that either all such variables
have their variances and covariances represented explicitly, or
none of them. In the latter case, we assume that all variances and
covariances for the manifest exogenous variables are distinct free
parameters, i.e., have different free parameter numbers not
duplicated anywhere else in the diagram.

In the initial diagram, all structural parameters are free, and all are
assigned different parameter numbers. Hence, in this case, we are
fitting an unrestricted common factor analysis model.

In EzPATH, fitting such a model invoives 3 main steps: (a) power
up the program and import a data file, which must be either a
correlation, covariance or SSCP matrix, with the USE command;
(b) enter the model with the MODEL command by transcribing the
path diagram into the PATH1 language; (c) set desired
computational options and ESTIMATE the model coefficients.

To invoke EzPATH, type

EZPATH

You should soon see the following screen display.

© 1989, SYSTAT, Inc. 11
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You are in EzPATH module.

Next, import the data file. Data for this example are in a file called
DEMO1.8YS, which was on the distribution disk. Simply enter the
command

USE DEMO1l

What appears next is the familiar SYSTAT display of variable
names. This indicates that the data file has been found and read
successfully.

You are now ready to enter the model in the PATH1 language.
There are actually several ways you can do this. We will try a
method called "interactive entry" first. Begin by issuing the MODEL
command by typing the word MODEL followed by a carriage
return. When the command cursor reappears, you may enter your
model, line by line. In this mode of entry, each line you enter is
checked immediately for correct syntax. Any obvious syntax error
is flagged immediately, and a diagnostic message is issued. Most
errors can be recovered from quickly and easily. -

Once you enter the MODEL command, EzPATH will interpret all
subsequent commands as PATH1 statements, until you issue any
SYSTAT or EzPATH command. Many people trying EzPATH for
the first time will accidentally end a model prematurely after
forgetting to include at least one path. If this happens don’t worry.
You can recover from such an error in seconds, and none of your
work will be lost. We'll demonstrate how to recover from an error
of this type later in the tutorial.

12 © 1989, SYSTAT, Inc.

After the MODEL command has been issued, models are entered
into the computer one relationship at a time. Any line beginning
with a "*" is treated as a comment, and is added to the command
log, but is not parsed. Blank lines are treated similarly.

Blank spaces have no effect in PATH1 statements. Consequently,
you may use blanks liberally in formatting your input for easy
readability.

We now enter the model directly from the path diagram. Consider
the arrow in Figure 2 between factor F and manifest variable X1.
This arrow represents a single relationship, in this case a
"directed" relation. We enter it with the following statement:

(F)-1->[X1]

(You should type the above statement exactly as it appears, with
the letters in upper case, and then hit the carriage return.)

Notice that, in the PATH1 language, each arrow and wire in a path
diagram produces a single model statement. Arrows are
represented with "-->", while wires are represented with "==". If a
wire or arrow has a structural coefficient which is a free parameter
associated with it, a coefficient number must appear between the
two dashes. In the first model statement we entered, the structural
coefficient for the arrow was assigned parameter number 1.

Now let’s enter the path from F to X2. There are actually two

distinct ways you can do this. Either of the following two lines will
work. (DON'T TYPE EITHER OF THESE LINES IN YET!)

-2=->[X2]
or
(F)-2->[X2]
This illustrates one of the standard PATH1 conventions which

makes PATH1 files easy to read, and easy to convert to and from
path diagrams. In any relationship there are two variables. If, on
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the line following a relationship, the first variable is left out, it is
assumed to be the first variable from the last preceding line which
had two variables in it. This feature can save the user a
considerable amount of typing, and can contribute significantly to
the readability of the file.

Before continuing to enter our model, let’s simulate an error in
EzPATH, so we can examine some of the facilities the program
provides to make error recovery easy. Pretend you were typing
the first alternative version of the second model line, but forgot

one of the dashes. Type the following erroneous entry exactly as it
appears.

-2>([X2]

In this case, you forgot the second dash in the arrow, and thus
attempted to enter a line with incorrect syntax. EzZPATH therefore
rejects the line with an error message. Because this line caused
no serious damage to the emerging picture of your model which
EzPATH is constructing, the program informs you that you may
re—enter the preceding line. You could re—enter the entire line,
but there is, as in any SYSTAT module, an easier way. Here we
use the SYSTAT command line editing facility, which allows fast
editing of the previous 5 command lines. (Users unfamiliar with
this facility should immediately read page 24 in the SYSTAT
manual.) Simply hit the F9 function key, and a copy of the
previous line will appear. You can edit this line using standard
SYSTAT line editing functions. Hit the <Ins> key to enter insert
mode, insert the missing dash and hit the carriage return key to
re—enter the line. This time EzPATH should accept the line without
complaint. -

Now try entering the rest of the model on your own. But in the
process of doing this, let’s simulate another error. Type the
following lines carefully, exactly as they appear:

-3->[X3]
-4->[X4]
(U1)-5->[X1]
(U2) -6->[X2]
(U3)-7->[X3]
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ESTIMATE

Following the last line, you will see a message that the model has
been parsed successfully. This message is of course, premature,
because there is one path in the diagram which you "forgot" to
enter.

EzPATH is not clairvoyant. In this case, because you included the
ESTIMATE command, EzPATH assumed you wished to terminate
the model. In effect, you have proposed a common factor model
in which the 4th manifest variable has no unique variance! It might
be the case that you wouldn’t notice the oversight in your model
until after going through the entire estimation process.

When you exit the model, EzPATH reminds you that it can’t begin
estimation yet because you have not yet indicated the sample size
for this data matrix. It will ask you whether you wish to use a
default value of 101, or enter a value.

Imagine, for example, that you suddenly realized your error at this
point. First, enter

N

in response to the prompt, because you do not wish to use the
default value of 101.

We would like to add an additional line to the model. Once you
leave model entry mode, you cannot simply enter another line,
because EzPATH goes through an extensive set—up procedure to
convert your model to a set of set of model equations immediately
after leaving model entry. However, error recovery is extremely
simple. Type

FEDIT >
to activate FEDIT and edit your previous command lines. Notice

that your MODEL statement, and all your correct PATH1 model
specification statements, are available in the command line log.
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At this point you have several options. One option is to use the
facility in PEDIT which allows you to mark a set of lines as a block
(they will appear on your screen highlighted in reverse video). If
you do this, the highlighted commands will be executed after you
leave FEDIT. (If you are unfamiliar with the method for marking
blocks of lines in the FEDIT editor, consult your SYSTAT
documentation. For most MSDOS machines, blocks are marked
using the <F9> function key at the beginning and end of the
block.) In this case, you can simply highlight the MODEL statement
and all the PATH1 lines up to but not including ESTIMATE, and
exit FEDIT. When asked if you wish to save your changes, you
can say "N." At this point EZPATH will execute all the lines you
highlighted. In essence, then, you will have returned to where you
were in the mode! entry process just before you made your error.
Then you can enter the last line in the model, i.e.,

(U4)-8->[X4]
Of course, you could, while in FEDIT, have simply added the line
there, highlighted all the lines by marking them as a block, and
exited. The result would have been the same.
At this point we have correctly entered the factor model, and we
are ready to estimate the coefficients of the model. If you wish to
save a permanent copy of the output, you would type

OUTPUT DEMO1
As is the case in other SYSTAT modules, this will create a file
called "DEMO1.DAT," which will hold the results of your analysis.
Before estimating our model, we must inform EzPATH of the
number of observations on which the covariance or correlation
matrix was based, because this information is not present in the
DEMO1.SYS file. In this case, the number is 130, so type

NUMBER=130

and a carriage return.

Then type
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ESTIMATE

Since you have not activated any special estimation options,
EzPATH will begin iterating a best—fitting solution to the model
you have entered. The standard option is to perform a least
squares fit of the model first, then use the values from this
estimation as starting values for a maximum likelihood estimation.
During the computation, Ezpath will report the progress of the
iteration on the screen by printing the value of the discrepancy
function along with the iteration number. (You can alter this
behavior with the REPORT cormmand.) At the end of each screen
of output, the program will pause. You can disable this pausing
function with the command

PAGE SCREEN=SCROLL
which is described on page 45 of the SYSTAT manual.

When the maximum likelinood estimation has finished, EzPATH
will print some summary statistics, and then output the estimated
model in the PATH1 language. What you should see in the last
part of the output is the following :

Here are the results for the fitted model.

MODEL

(F)-1{ 0.320}->[X1]
-2{ 0.674)->[X2]
-3{ 0.431)->[X3]
-4{ 0.520}->[X4]

(U1)-5( 0.947}->[X1]
(U2)-6{ 0.739)->[X2]
(U3)-7( 0.903)->[X3]
(U4)-8( 0.854}->[X4]

The output will look identical to the input, except that, immediately
following the parameter numbers, the estimates of the various
coefficients have been inserted within braces. If you had
tequested standard errors for these estimates (by typing
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SE=YES), they also would have been printed inside the braces,
and the output would have looked like this:

Here are the results for the fitted model.

MODEL

(F)-=1{ 0.320 SE= 0.112}~>[X1]
-2{ 0.674 SE= 0.133}->[X2]
~3{ 0.431 SE= 0.114}->[X3]
-4{ 0.520 SE= 0.119)->[X4]

(U1)-5{ 0.947 BE= 0.064}~>[X1]
(U2)-6{ 0.739 SE= 0.109)->[X2]
(U3)-7( 0.903 SE= 0.067)}->[X3]
(U4)-8( 0.854 SE= 0.075}->[X4]

At this point, let’s imagine that, after inspecting the model, you
decided to modify it and test it again. Suppose, for example, you
decided to test a revised model in which the structural coefficient
in the path from factor F to manifest variable X3 was constrained
to be the same as the coefficient from factor F to variable X2. This
new model corresponds to the path diagram in Figure 3.

\nH

Figure 3. Constrained Single Factor Model.

H
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In order to test this revised model, we need only enter the same
model as before, but with one change — — the parameter
numbers assigned to the two coefficients forced to be equal
would now have to be the same.

[Note: It is not necessary to re—number the parameter numbers
so that they range from 1 to k. You could, for example, number
both of the coefficients 2, or both of them 3, or, both 75, for that
matter.]

FEDIT makes this model modification especially easy, as the
experienced SYSTAT user has probably already realized. You
could, for example, type "FEDIT >" and simply edit the command
log, highlight the word MODEL, the revised model commands, and
the ESTIMATE command. After hitting F10 to exit FEDIT, the new
model would be entered immediately.

However, there is another method which may produce the results
faster when the model is complex and iteration takes a fair amount
of time. We’ll use this method to illustrate another key feature of
EZPATH and the PATH1 command language.

Instead of editing the command log, we’ll edit the output log, and
use it instead. Type "FE *", and you will see the results just
displayed from the previous model. The way PATH1 syntax works,
the first number appearing within braces in a line can serve two
purposes. When the line is output, the number is the result of
estimation. When the line is input, the number is the start value for
iteration.

This means that you can take the output from one EzPATH
analysis, highlight it, change it, and use it as input for the next
analysis. The output values from the old analysis will serve as start
values for the new analysis.

EzPATH prints the word MODEL just prior to the PATH1 output
statements. This means that, if you decide to use the output from
one analysis as the input to the next, you don't have to bother to
type in this command.
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Recycling EzPATH output in this fashion can speed up iteration
substantially when compared to performance using defauit
starting values. if no start values are specified, EzPATH estimates
starting values using a non—iterative method. If any starting values
are specified, EzZPATH uses default values of .5 for the other free
parameters, and 1.0 for exogenous latent variable variances.

To continue with our example, move the cursor just above the first
PATH1 output statement. Notice that the command MODEL is
already there. Move to the path from factor F to variable X3, and
change the coefficient to 2. Move the end of the PATH1
statements, and type the word estimate. Now, move back to the
MODEL statement, and, using the F9 key, highlight the MODEL
command, PATH1 statements, and ESTIMATE command. After
marking the end of the block with the F9 key, hit the F10 key to
exit. Tell EzZPATH to submit the commands, and watch your
revised model estimated and tested in seconds.

Of course, you could modify the mode! still further, by modifying
the output log again.

In the above example, if you changed the parameter number in
the path from factor F to variable X3 to 2, it would not be
necessary to change the values within braces to be equal. When
two paths have the same parameter number, EzPATH uses the
last starting value input for that parameter as the starting value.

These design features make PATH1 especially suited for
interactive structural modeling. The language serves equally well
for conveying results to or from the computer. This can offer
significant advantages in Operation, one of which we just
demonstrated. Here is another. Suppose you are analyzing a
large model, one which takes a lot of time to estimate, and you
receive an urgent phone call which requires you to use your
computer immediately to search for some data. You are in the
middle of lengthy iteration. With other analysis systems, you would
have no choice but to reset the computer and lose all your work.
However, with EzZPATH that won't happen. Here’s why. At any time
during iteration, if you hit <Ctrl>~-<Breaks> keys simuitaneously,
iteration will stop, and the results, based on the iterations which
have been completed, will be printed. At this point, if you have
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been saving your work to an OUTPUT file, you can immediately
type QUIT and leave EzPATH. Otherwise, you should type FEDI.T
*, type a blank or some other character into your screen buffer file
(to activate the filesave switch), then hit F10 and save the output
to a file before QUITting. Once your phone call is completed, you
can re—enter EZPATH, edit the output file, and submit the
previous results as your model!. These results, used as start
values, will resume the iteration approximately where it was.

Here are some tips for optimizing your use of this facility.
Whenever analyzing a large model, always use the ouTPUT
command to attach an output file so that, if you must interrupt the
iteration and leave EzPATH, you will be able to save all of your
output conveniently. Also, when loss of time could be critical,.
always set FORMAT=5 or higher, so that the printed results will
have enough accuracy to prevent loss of iterations due to round—
off error. (For larger models, we find that 3 digit accuracy is
sometimes insufficient. EzPATH performs its internal calculations
in IEEE double precision, i.e., 16 digit accuracy, but results are
read back in only to the accuracy level they were printed in the
PATH1 output statements.)

If you interrupt iteration during the LS estimation, and the DUAL
option is in force, EzPATH will jump into the ML estimation phase.
To leave this phase, simply interrupt the program a second time.

Remember that, if you interrupt the program, the current
parameter estimates remain active, and will be used as start
values if you restart estimation with an ESTIMATE command. (If
you have progressed to the ML phase of a DUAL estimation
procedure, you will restart with a L8 estimation unless you first
type METHOD=ML.)

The ability to re—enter the estimation procedure is useful in
several ways. For example, if your output is printed with a large
number of decimal places, you can always change the format to a
lower number and reprint the resuits. Suppose you have obtained
results by maximum likelihood estimation with 5 decimal places,
and you wish to reprint them with 2. The sequence of operations
would be as follows:
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METHOD=ML
FORMAT=2
ESTIMATE

This begin the estimation process with starting values equal to the
values just obtained. Since the solution has already converged
and is still active, you will see the reformatted results almost
immediately.

When analyzing a series of models with EzZPATH, you can
maintain, in the attached output file, a complete record of your
model fitting session. There are several devices at your disposal
which will make the documentation process more effective. First,
feel free to use the NOTE command to add comments to your
output. Second, don’t hesitate to use FEDIT to enter the output
file, and add clarifying comments as to why you chose a particular
modet to analyze. | urge you to do this.

A word of caution — EzPATH makes it possible to analyze many
models in a short amount of time. But the efficiency of EzZPATH is
atwo—edged sword. It can, in the wrong hands, become a tool
for mindless model—fiddling. In the right hands, it will remove the
mystique from covariance structure modeling, and allow the user
to concentrate on substantive considerations. Any newcomer to
structural modeling would profit from Norman Cliff’s (1983)
thoughtful advice.
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4. Some More Examples’
A. Stability of Alienation.

A familiar example in the structural modeling literature is the
study on stability of alienation by Wheaton, Muthen, Alwin,
and Summers (1977). Jéreskog and Sérbom, in the LISREL
VI manual (1984, pp. 22—30), analyzed two very similar
structural models with the Wheaton data. The covariance
matrix for these data, based on a sample size of 932, isin a
file called WHEATON.SYS on the distribution disk.

Figure 4 on page 26 is the structural diagram for the first
model analyzed by Jéreskog and Sérbom.

This diagram is similar to one in Jéreskog and Sérbom
(1984), with an important difference. Their diagram does not
include (explicitly) the wire labelled with parameter number
4 in our diagram, although their table of results makes it
clear that this parameter (i.e., the variance of SES) was in
fact estimated.

This distinction is important, because in EzZPATH, exogenous
latent variable variances are, for convenience, always
assumed to be fixed at one unless explicitly declared
otherwise.

Remember, any arrow without any numerical index attached
is assumed to have a fixed coefficient of 1. Such arrows may
be given in the PATH1 language in a simplified form — for
example, the arrow from EPSILON1 to ANOMIA67 is
denoted as follows:

1 Throughout this user’s guide, we will use examples from published literature
to illustrate the use of EzPATH. Inclusion of any particular example should not be
taken as an endorsement of that example. In fact, if you explore these examples
carefully using EzPATH, you will find that they can be a springboard for
numerous interesting scientific and statistical questions. Detailed explication

.and/or exploration of these questions would, unfortunately, multiply the length of

this volume by a factor of about 5.
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(EPSILON1)-->[ANOMIA67]

Try setting up this model yourself with EzPATH. If you fit the
model correctly, you will obtain a chi—square value of
approximately 71.47 with 6 degrees of freedom.

If you run into difficulty, here is one version of the PATH1
statements for the model. These statements are contained in
a file called WHEATONA.CMD on the distribution disk.

* Wheaton Model A.

(S8EB)-1-> (AL67)
-2-> [SEINDEX]
-->[EDUCATN]
-3->(AL71)

(SES) -4~ (SES)

(AL67)--> [ANOMIAG67]
-5-> [POWLES67]
-6-> (AL71)

(AL71) --> [ANOMIA71]
-7->[POWLES71]

(DELTA1) --> [EDUCATN]
(DELTA2) --> [ SEINDEX]

(DELTAl) -8~ (DELTAl)
(DELTA2) -9~ (DELTA2)

(ZETAl) -~> (AL67)
(ZETA2) --> (AL71)
(ZETA1)-10-(ZETA1l)
(ZETA2)-11-(ZETA2)

(EPSILON1) --> [ANOMIA67]
(EPSILON2) --> [POWLES67 ]
(EPSILON3) --> [ANOMIA71]
(EPSILON4) --> [ POWLES71]
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(EPSILON1)~12~ (EPSILON1)
(EPSILON2)-13- (EPSILON2)
(EPSILON3)-14- (EPSILON3)
(EPSILON4)-15- (EPSILON4)

*# END OF MODEL

Jéreskog and Sérbom (1984) point out that a modified
version of the above model , in which EPSILON1 and
EPSILONS are allowed to correlate, fits the data much better
than the original version. This model is represented in the
path diagram in Figure 5.

Of course, the only difference between Figures 4 and 5 is the
wire between EPSILON1 and EPSILONS. Producing this
revised model from your original madel should take you
about 30 seconds with EzPATH. The revised model is in a
file WHEATONB.CMD. To analyze either of the Wheaton
models using our command files, simply make sure the files
are in your current directory, and type

SUBMIT WHEATONA
or

SUBMIT WHEATONB
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Figure 5. Structural Model B for Stability of Alienation
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B. Personality and Substance Abuse.

Huba and Harlow (1987) present a structural model relating
personality characteristics to alcohol and marijuana
consumption in adolescents. The correlation matrix (to the
two—digit level of precision given in their printed article) for
their data, based on 257 observations, is given in a file called
HH.SYS, on the distribution disk2. Their first model
corresponds to the path diagram in Figure 6.

EzPATH users are urged to obtain a copy of the Huba and
Harlow article, because their Figure 1 presents interpretation
problems which are typical of those encountered by readers
of the structural modeling literature. In their diagram, a term
¥, is used to refer to the variance of the latent variable "Law
Abidance." On the other hand, W4 stands for the variance of
a disturbance, or "error" latent variable "Beer Consumption.”
In each case, the symbols (¥, and W¥4) are attached to
arrows, and it might seem to the casual observer that they
mean the same thing, although they don't. The first symbol
simply represents a wire, whereas the second actually
represents a latent variable, an arrow, and a wire. Our
diagram makes clear the distinction. The file HH.CMD, which
contains a PATH1 representation of the model in Figure 6, is
on the distribution disk.

We urge the user to try to produce the PATH1 statements
corresponding the Figure 6 before examining the contents of
HH.CMD. Issuing the command

SUBMIT HH

will produce output (including standard errors) for the model
from our file.

Results obtained with EzPATH will correspond very closely,
but not exactly, to those reported in the first column of Table

2in general, it is not strictly correct to analyze a correlation matrix as though it
were a covariance matrix. However, many authors have done this in the past,
and we shall, in replicating their work, analyze the same data in the same way.
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2 in Huba and Harlow (1987). | assume the discrepancy is
due to the fact that we are using the correlations from their
article, which they reported to only two digit accuracy.
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Figure 6. Structural Modei for 10 Personality and Drug Use Variables
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5. EzPATH Diagrams and the PATH1 Language
A. EzPATH Diagrams

| pointed out above that, in their original article, Huba and
Harlow (1985) used the same pictorial device (i.e., the Greek
letter "W attached to an arrow) in their path diagram to
represent two distinctly different model entities. On the left
side of their diagram the letter ¥ stands for a wire, while on
the right side it represents considerably more. Although an
experienced structural modeler would be able to sort out this
inconsistency/ambiguity rather quickly, the newcomer might
find their diagram confusing.

The Huba—Harlow example dramatizes a problem which is
common in the structural modeling literature —— i.e.,
confusion created by an absence of clear, and widely
accepted, standards in structural modeling diagrams. (See
Steiger, 1988, for a discussion of communication problems
in structural modeling.) The Huba and Harlow paper is by no
means unusual in this regard. in fact, in many ways it is a
model of clarity relative to other papers in the field, and the
problem in their diagram is relatively minor.

Ideally, structural diagrams should be completely
unambiguous. The fact that they often are not is disturbing,
given the negative consequences which ensue. It is difficult
to imagine, let alone estimate, the number of hours which
have been wasted by researchers attempting to reproduce
structural models from inaccurate, misleading, or ambiguous
structural diagrams.

We wish to establish rules for path diagrams which will
guarantee that the diagram will represent accurately any
model which fully accounts for all variances and covariances
of all variables, both manifest and latent. Our rules are based
on the following considerations.
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Path diagrams consist of variables connected by wires and
arrows, representing, respectively, undirected and directed
relationships. These variables must be endogenous or
exogenous. They must also be manifest or latent. Hence any
variable can be classified into 4 categories: (a) manifest
endogenous, (b) manifest exogenous, (c) latent
endogenous, and (d) latent exogenous.

if random variables are related by linear equations, then
variables which are endogenous (i.e., appear on the left side
of equations ) have variances and covariances which are
determinate functions of the variables they regress on. For
example if X and Y are orthogonal and W = aX + bY, then
the 0,2 = a%0,2 + b20y2.

Hence, one way of guaranteeing that a diagram can account
for variances and covariances among all its variables is to
require: (1) representation of all variances and covariances
among exogenous variables, (2) no variances or
covariances to be directly represented in the diagram for
endogenous variables, and (3) all variables in the diagram
be involved in at least one relationship.

There is a significant practical problem with many path
diagrams — lack of space. In many cases, there are so many
exogenous variables that there is simply not enough room to
represent, adequately, the variances and covariances
among them. Diagrams which try often end up looking like
piles of spaghetti. For a beautiful example of a spaghetti
diagram, see page 147 of the excellent text by James,
Mulaik, and Brett (1982).

One way of compensating for this problem is to include rules
for "default" variances and covariances which allow a
considerable number of them to be represented implicitly in
the diagram.

These considerations lead to the following rules:
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1. Manifest variables are always represented in boxes
(squares or rectangles) while latent variables are always
in ovals or circles.

2. Directed relationships are always represented
explicitly.

3. Undirected relationships need not be represented
explicitly. (See rule 10 below regarding implicit
representation of undirected relationships.)

4. Directed relationships are represented by arrows
between two variables.

5. Undirected relationships, when represented explicitly
are shown by a wire from a variable to itself, or from one
variable to another.

6. Endogenous variables may never have wires
connected to them.

7. Free parameter numbers for a wire or arrow are
always represented with integers placed on or slightly
above the middle of the wire or arrowline.

8. Fixed values for a wire or arrow are always ‘
represented with a floating point number containing a |
decimal point. The number is generally placed on or 3
slightly above the middle of the wire or arrowline.

9. Different statistical populations are represented by a
line of demarcation and the words Group 1 (for the first

population or group), Group 2, etc,. in each diagram
section.

10. Ali exogenous variables must have their variances
represented either explicitly or implicitly. If variances and
covariances are not represented explicitly, then the
following rules hold:

© 1989, SYSTAT, Inc.

a) For latent variables, variances not explicitly
represented in the diagram are assumed to be 1.0,
and covariances not explicitly represented are
assumed to be 0.

b) For manifest variables, variances and
covariances not explicitly represented are assumed
to be free parameters each having a different
parameter number. These numbers are not equal
to any number appearing explicitly in the diagram.

By adopting a consistent standard for path diagrams, we
can facilitate clear communication of path models,
regardless of what system is used to analyze them. Besides
standing on their own as a coherent standard for path
diagrams, the above rules for EzPATH diagrams are
designed to match the PATH1 language, and allow quick
translation from the diagram to the ianguage, and vice—
versa.

Within this manual we will adhere to these simplifying
conventions. However, the typical EzZPATH user will attempt
to use the program to reproduce results from published
papers employing a wide variety of standards for their path
diagrams. In some cases this will create no problems, and
the user will be able to translate directly to and from the
published path diagram to a PATH1 representation of the
model. However, experience has taught me that it is often
useful to translate published diagrams into an EzPATH
diagram, i.e., one which obeys rules 1—10 above, before
coding the diagram in the PATH1 language. Frequently the
translation process will draw attention to errors or
ambiguities in the published diagram.

Here are some examples of the kinds of things you will see
in published causal modeling papers.

Figure 7 shows a portion (this is not a complete diagram and

it does not conform to EzPATH diagramming rules) of a path
diagram which is quite typical of what is found in the
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literature. Some of the diagram is clear and routine, but what
do we make of the symbols D1 and D2? Variable L,1 is a
!atent exogenous variable. It has arrows pointing away from
lt.and No arrows pointing to it. Since, by rule 9 for EzP);\TH
dlagrams,.all €xogenous variables must have their variances
gnd Covariances explained, the most reasonable assumpii

is that D1 stands for the variance of latent variable L1 Fen

Hence, we modify the dia
! gram to make D1 a para
attached to a wire from L1 to itself. parameter

ES
D1
o

Figure 7. A Section From an Ambiguous Path Diagram

But what are we to make of D2? In the diagram it looks iust
like D1, but on closer inspection we find it must mean e
something different. D2 is connected to L2 and L2 s an
endogenous latent variable. Consequently, the most
reasonable interpretation is that D2 represénts an "error

variance" for latent variable .2, We it wi
. . represent it wi R
latent variable" E2 with variance D2. P 1 an terror

The revised path diagram, accurate

. ly reflecti ,
model, is shown in Figure 8. d ting the author’s
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Figure 8. Revised Version of the Diagram in Figure 7

Some path diagrams don’t represent the error variance
attached to endogenous latent variables at all —— they leave
this to the reader to figure out for him/her self. Whenever an
endogenous latent variable has no error term, you should
suspect that an error latent variable has been left out,
especially if your degrees of freedom don’t agree with those
of the published paper.

In some cases you will have to be creative, tenacious, and
lucky to figure out what the author intended. Even the most
accomplished and generally careful authors will leave out
paths, forget to mention that some values were fixed rather
than free parameters, or simply misrepresent the model
actually tested. Some times the only way to figure out what
-the author actually did is to try several models with EzPATH,
until you find coefficients which agree with the published
values. Sometimes even this approach will not work,
because on occasion correlation or covariance matrices are
printed incorrectly.

Needless to say, if authors were to adopt EzPATH

diagramming rules and/or report their models in the PATH1
language, these problems would be reduced.
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B. The PATH1 Language. variables adhering to rules 3 and 4 above,

PATH1 was designed to allow quick conversion of EzPATH
diagrams to a form where they can be read by a computer.
Here are the rules for the PATH1 language.

<#1> is an integer representing the coefficient number,
and <#2> is a real value representing the start value.

1. Each arrow and wire is represented on a separate
line.

2. Blanks never count. They are stripped from the line
before parsing.

3. Manifest variable names are represented as a name
enclosed within brackets. The name enclosed in
brackets must follow the rules for a SYSTAT variable
name. The name thus can be at most 8 alphanumeric
characters in length. Characters must be upper case.
The underscore character " " is also allowed.

Examples. [MATH1)
[HS_MATH]
[ANXIETY]

4. Latent variable names are represented by a variable
name in parentheses. The name can be up to 20
characters in length. Upper and lower case characters
are allowed, and are distinguished. Underscores are
allowed, but dashes are not allowed.

Examples. (Verbal_Intelligence)
(Explosive_sStrength)

5. Directed relationships are represented in the following

form in a PATH1 input line:

VNAMEl-<#1>{<#2>)}~->VNAME2

where VNAME1 and VNAME2 are valid manifest or latent
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If VNAME1 is omitted, then the first variable in the
directed relationship is assumed to be VNAME1 in the
last preceding line having two variable names in it.

<#1> is required if the path has a coefficient which is a
free parameter. If the coefficient is a fixed value, <#1>
is omitted. Otherwise, <#1> is the integer value for the
parameter number. It must be between 1 and 999 in
value.

If the coefficient for the arrow is a free parameter, then
<#2> is the starting value used during iteration. If the
coefficient is fixed, then <#2> represents the fixed
value. If both <#1> and <#2> are omitted, then the
path is assumed to have a fixed coefficient with a value
of 1.

Exampiles. (IQ_10)-1~>[WECHSLER]
(X)==>[Y]
6. Undirected relationships are presented in the following
form
VNAME1l-<#1> (<#2>}-VNAME2

where VNAME1, VNAME2, <#1>, and <#2> are the
same as in the preceding section.

If vNAME1 is omitted, then the first variable in the

undirected relationship is assumed to be VNAME1 in the
last preceding line having two variable names in it.

Examples. (L1)-1-(L2)
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(Intelligence)-(.5}-(Success)

7. Different statistical populations are denoted in the
PATH1 language by a GROUP statement of the form

GROUP <#>

where <#> is the number of the population. All PATH1
files begin (implicitly) with a GROUP 1 statement. All
statements are assumed to refer to the group referred to
in the last GROUP statement. The current version of
EzPATH does not implement the GROUP statement, as
multiple group tests are not supported.

8. Blank lines, and any lines beginning with a *, are
treated as comment lines, and are not analyzed as
PATH1 statements.

As the examples in the tutorial have demonstrated, each
element in an EzPATH diagram has an obvious
corresponding element in PATH1. However there is one
situation where the EzPATH diagram may represent
information implicitly which must be expressed explicitly in
the PATH1 representation. This is when the model has
manifest exogenous variables. As noted in rule 10b for
EzPATH diagrams, the diagram allows you the option of not
representing all the variances and covariances among
exogenous manifest variables explicitly. However, for
reasons of computational efficiency, the user must follow one
of two courses of action. if the AUTOFIX switch is ON, then
no variances and covariances among exogenous manifest
variables are to be expressed explicitly in the diagram. If the
AUTOFIX switch is OFF, then all variances and covariances
among exogenous manifest variables must be expressed
explicitly in the PATH1 representation. This restriction in the
program (rather than the PATH1 language itself) presents
few problems in practice.

© 1989, SYSTAT, Inc.

6. EzPATH Commands
EzPATH Commands are:

ACCURACY
AUTOFIX
CMODEL
ESTIMATE
FACTORMODEL
ITERATIONS
METHOD
MODEL
NUMBER
REPORT
RMODEL
SAVE

SE

These commands are described on the following pages. As with
other SYSTAT commands, these may be abbreviated by the first
two letters.

EzPATH also supports the full range of SYSTAT commands,
including

CHARSET OPTIONS
FEDIT OUTPUT
FORMAT PAGE
FPATH QUIT
HELP SUBMIT
NAMES SWITCHTO
NOTE USE

These latter commands are described on pages 33—48 of the
SYSTAT manual. If you are new to SYSTAT, it would be an
excellent idea to study these pages before proceeding.
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ACCURACY (Select level of accuracy for the iterative procedure.)
The accurRACY command is used to control the approximate level
of accuracy (in terms of number of digits) of a solution attempted
during the iterative estimation procedure.

Syntax for this command is:

ACC = <#>

Values between 1 and 9 are acceptable. Default is 3.
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AUTOFIX (Handle all variance —covariance relationships for
manifest exogenous variables automatically.)

Syntax for this command is:
AUTOFIX = YES|NO

Manifest exogenous variables which are unconstrained in their
relations to other manifest variables are referred to in the LISREL
model as "x—variables." By the normal EzPATH diagram rules the
variances and covariances for such variables must be
represented explicitly.

However, a characteristic of such variables is that, because their
variance covariance relationships are essentially unconstrained by
the model, the estimated variances and covariances under the
model turn out to be precisely the same as the observed sample
variances and covariances. Since we know in advance the values
these estimates will take on, there is no purpose estimating them
iteratively. Indeed, including them in the iteration process wastes
computing time.

Since the manifest exogenous variables are unconstrained by the
model, their variances and covariances do not contribute to the
loss function during estimation. Consequently, if these variables
(and their variances and covariances) are treated as fixed instead
of random, the results of the analysis will be exactly the same.

When AUTOFIX is in the YES mode, all manifest exogenous
variables are automatically treated as fixed variables, and their
variances and covariances are treated as fixed parameters equal
to the observed sample variances and covariances. Model
degrees of freedom are automatically corrected.

if AUTOFIX is in the YES mode, no manifest exogenous variables
may have their variances and covariances specified in a PATH1
statement. If, on the other hand, AUTOPIX is in the No mode, then
all variances and covariances for all manifest exogenous
variables must be specified with PATH1 statements.
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EzPATH will refuse i ; .
restrict ! to acgept a mode! which disobeys the . CMODEL (Automatically create PATH1 commands for a complete
strictions in the preceding paragraph. covariance matrix)

Besides bgmg useful in accelerating the processing of causal ; Syntax for this command is
models with exogenous manifest variables, the AUTOFIX 5
command also allows convenient processing of models with fixed CMODEL <file name>

i exogenous variables.

“ CMODEL creates a file called <file name>.CMD containing PATH1
file statements for the entire covariance matrix. This facility can be
a timesaver when direct tests on the structure of the covariance
matrix are to be performed.

Examples of such tests facilitated by the CMODEL command are
given in Section 9.E.

42
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ESTIMATE (Begin estimation of a selected model.)

When the estimate command is given, EzPATH begins the
statistical estimation procedure. Iteration continues until the
conditions for termination are met, maximum number of iterations
is reached, an error condition occurs, or the user terminates the
model with a user interrupt.

Following the completion of the estimation procedure, technical
information is printed, and the results of estimation are output in
the PATH1 language.

It is possible to interrupt estimation at any point by pressing the
<ctrl> and <Break> keys simultaneously. If you do this, the
results of estimation up to the point when the interrupt occurred
are still stored in memory, until you USE another data matrix or
enter another MODEL command. You may resume the estimation
by typing ESTIMATE again.

If you are using the METHOD = DUAL option, and have
progressed to the maximum likelihood estimation before
interrupting iteration, you should type METHOD = ML before
resuming execution. Otherwise, the program will begin a ieast
squares estimation rather than a maximum likelihood estimation.
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FACTORMODEL (Automatically create PATH1 statements for a
complete common factor model.)

Syntax for the command is:
FACTORMODEL <file name> [/ |COV|, |NOSTART|]

<file name> is a .SYS file. cov and NOSTART are optional
switches whose functions are discussed below.

FACTORMODEL is one of the most powerful and useful commands
in EzPATH. It allows the SYSTAT system to construct a complete
factor model specification, in the PATH1 language, automatically.

One of the most effective uses of EzZPATH is in the construction of
measurement models via the type of exploratory—confirmatory
factor analysis described by Karl Jéreskog (1987) in his 1978
Presidential Address to the Psychometric Society. This method
begins with a fully specified common factor model, which is then
pruned of insignificant paths.

Typing a full factor model for a reasonably large number of
variables is tedious, to say the least. The purpose of the
FACTORMODEL command is to relieve the user from this tedium.

FACTORMODEL operates on two .SYS files simultaneously. One file
is a correlation or variance—covariance matrix file (which must be
actively in use at the time). The second is a factor loading matrix
file, which is specified in the FACTORMODEL command line.

Typical operation of this command is as follows. First you perform
a factor analysis on the correlation or covariance matrix, using the
SYSTAT FACTOR module. The factor loading matrix (usually a
rotated version, which must not be created with the SORT option)
is SAVEd to a *.SYS file. Then you SWITCHTO EzPATH (the
covariance matrix will remain in use) and type

FACTORMODEL <file name> [/COV, NOSTART]
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where <file name> is the name of the .SYS file containing the
factor loadings. EzPATH will create a .CMD file with the same
name as <file name>. This file will contain the full PATH1
specification for a common factor model with starting values equal
to the numerical values in the loadings file. (If you wish to
suppress these starting values, use the /NOSTART switch.)

if you use the /cov option, EzPATH will add statements for factor
covariances. Factor variances are left unspecified under this
option, which means that (1) they are implicitly defined to be 1.0,
and (2) factor covariances are also factor intercorrelations.

You can use the FACTORMODEL command with a factor loading
matrix which you have typed in directly using the EDIT module.
However, you must make sure that none of the manifest variable
names appears out of order in your factor loading file.
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ITERATIONS (Stop estimation after a certain number of

iterations.)

Syntax for this command is:

ITERATIONS

Default is 500.
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<#>
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METHOD (Choose the method of estimation.)
Syntax for this command is
METHOD = L8 | ML | DUAL

L8 causes ordinary least squares estimates to be produced. ML
produces maximum likelhood estimates. DUAL causes least
squares estimates to be produced first, and then uses these
estimates starting values in a maximum likelihood estimation.
DUAL is the default.
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MODEL (Input and parse the structural model.)

This command indicates to EzPATH that a model is to be entered.
All the following statements will be interpreted as PATH1 model
statements until a valid EzPATH or SYSTAT command is
encountered. When such a command is given, model entry is
terminated immediately, and the command is executed.

Syntax for this command is

MODEL |<variable list>]
Where <variable 1list> is an optional list of variables to be
modeled from the variables in the current file. This list must be

given if EzZPATH is used to model a subset of the variables in
your file.
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NUMBER (Enter the number of observations on which the REPORT (Control the amount and timing of information printed
covariance or correlation matrix was based.) during iterative estimation.)
Syntax for this command is The REPORT command controls information printed during
maximum likelihood and/or least squares iteration. Syntax for this
NUMBER = <#> command is

REPORT = <#> [/DETAIL]
Normally, a report is given every <#> iterations. The iteration
number and the current value of the function being minimized are
printed on the screen. For example
REPORT = 10
will cause the function value to be printed each 10 iterations.
The /DETAIL switch causes additional technical information (i.e.,

the value of each parameter and the gradient of the loss function)
to be printed.
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RMODEL (Automatically create PATH1 commands for a complete
correlation matrix.)

Syntax for this command is
RMODEL <file name> [/NOSTART]

RMODEL creates a file called <file name>.CMD containing PATH1
file statements for the entire correlation matrix. The model begins
with a set of statements creating "alias" latent variables having unit
variance. Then, statements creating all possible correlations
among these latent variables are added. You can quickly modify
this file to create a PATH1 file corresponding to any pattern
hypothesis on correlations. This facility can be a time saver when
direct tests on the structure of the correlation matrix are to be
performed.

As a default, the program inserts values of the sample correlation
matrix as starting values. Using the /NOSTART switch will cause

these values to be left out.

Examples of such tests facilitated by the RMODEL command are
given in Section 9.D.
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savE (Place technical information from the latest EzPATH iterative
run in files for later processing.)

Syntax for this command is

SAVE <file name>
If PRINT=LONG has been activated, and the SAVE command is in
effect, then:

1. The normalized residuals for the entire covariance matrix are
saved in a file called <file name>.RES.

2. The estimated variance/covariance matrix is saved in a COV file
called <file name>.HAT.
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8E (Select whether or not standard errors are to be computed.)
Syntax for this command is

SE = YES | NO

Default is No.

If maximum likelihood estimates are obtained, and the model

Hessian is positive definite, then standard errors for the estimates
will be calculated if you have indicated SE = YES.
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STANDARDIZE (Prints coefficients for latent variables
standardized to have unit variance).

Syntax for this command is

STANDARDIZE = YES | NO

Default is NO

If the standardization option is invoked, EzPATH prints, in addition
to the ordinary coefficients, a "standardized solution” containing
values for latent variables standardized to have variances of 1.

Manifest variables are left in the original metric.

Standard errors are not printed for a standardized solution.
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7. Technical and Theoretical Aspects of EzPATH

In this section we present some of the more important technical
and theoretical details on the models, methods, and techniques
underlying EzPATH. It is not absolutely necessary to understand
any of this material to use the program. However, we recommend
that all prospective users of the program at least browse through
this section.

Two aspects of EzZPATH are of particular theoretical interest. First,
the structural model equation system employed by EzPATH is
novel. Second, EzPATH provides theory for, and a practical
implementation of, asymptotic maximum likelihood statistical
estimation and confidence intervals for measures of model fit.

A. Models and Methods

Structural equation models have achieved increasing
popularity in the social sciences. Much of the credit for this
popularity can be attributed to the flexibility and power of the
methods themselves. Equally important has been the
availability of computer software for performing the modeling
process.

An enormous amount of material has been written on
structural models in the last 5 years alone. There are now
numerous textbooks and monographs for the beginner.
Users in need of such an elementary account are referred to
books by Long (1983a,b), James, Mulaik and Brett (1982),
Kenny (1979), Everitt (1984), among others. All of these
books have significant virtues, and all are relatively brief. The
reader with a serious interest in the subject should probably
at least browse through all of these books.

For a very interesting debate on the value of structural
models in the social sciences, | strongly recommend the
Summer 1987 issue of the Journal of Educational Statistics,
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which contained a critique of path analysis by D.A.
Freedman, and responses to that critique by a number of
writers.

| will not attempt to generate another such textbook here.
(However, a subsequent chapter will deal with some
important topics which are seldom discussed in the existing
textbooks.) Rather, | will provide a relatively terse discussion
of important technical aspects of EzZPATH.

We begin with a discussion of statistical models. The model
behind EzPATH is best understood in historical context, and
$0 we begin with a review of several important models for
the analysis of covariance structures.

In his 1986 review of developments in structural modeling,
Bentler described 3 general approaches to covariance
structure representations. The first and most familiar involved
integration of the psychometric factor analytic (FA) tradition
with the econometric simultaneous equations model (SEM).
This approach, originated by a number of authors including
Keesling, Wiley, and Jdreskog was described by Bentler with
the neutral acronym FASEM. The well—known LISREL model
is of course the best known example of this approach.

The LISREL model can be written in three interlocking
equations. Perhaps the key equation is the structural
equation model, which relates latent variables.

m=Bn+Tg+¢{ (1)

The endogenous, or "dependent" latent variables are
collected in the vector g, while the exogenous, or
"independent” latent variables are inn. B and I are
coefficient matrices, while f is a random vector of residuals,
sometimes called "errors in equations" or "disturbance
terms." The elements of B and " would be path coefficents
for directed relationships among latent variables. It is
assumed in general that f and n are uncorrelated, and that
1-B is of full rank.
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Because usually m and & are not observed without error,
there are also factor model (or "measurement model")
equations to account for measurement of these latent
variables through manifest variables. The measurement
models for the two sets of latent variables are

y=Am+e 2
and
x=AE+6 (3)

With the assumptions that (1) { is uncorrelated with &, (2) e is
uncorrelated with m, (3) § is uncorrelated with &, (4) {, €, and
6 are mutually uncorrelated, (5) B has zeroes in its diagonal,
and (6) | — B is of full rank, we find that the population
covariance matrix 2 can be written as

S 2
s = yy TyX (4)

Sy Zxx
where

- _ R ) _mny-T1 A o

Sgy = A =BT MOT + W)(1 - B)"" A/ + 6, (5)
S = AOA’ + 65 6)
S = AOM( - B’)“’Ay’ 7)

and ¢, ¥, 6., and 6, are the covariance matrices for £, {, e,
and & respectively.

This model reduces to a number of well—known special
cases. For example, if there are no y—variables, then the
model reduces to the common factor model, as can be seen
from Equation (7).

An important aspect of the LISREL approach is that, in using

it, variables must be arranged according to type. Manifest
and latent, "exogenous" and "endogenous" variables are
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used in different places in different equations. Moreover,
LISREL'’s typology for manifest variables is somewhat
different from that used by other models. Specifically, in
LISREL a manifest variable is designated as x or y on the
basis of the type (exogenous or endogenous) of latent
variable it loads on.

It is, of course, possible to translate models from a path
diagram representation of a model to a LISREL model.
However, this is not always easy. In some well known cases
special strategies must be used to "trick" the LISREL model
into analyzing a path diagram representation. For example,
LISREL does not allow direct representation of a path in
which an arrow goes from a manifest exogenous variable to
a latent endogenous variable. Consequently a "dummy”
latent variable (identical to the manifest variable) must be
created in such cases.

In his review, Bentler (1986) referred to the models of
McArdle (1978) and Bentler and Weeks (1979) as "generic"
approaches, in that their emphasis was on the distinction
between independent (exogenous) and dependent
(endogenous) variables, rather than manifest and latent
variables.

McArdie (1978) proposed an approach which was
considerably simpler than the LISREL model. This approach,
in essence, did not require any partitioning of variables into
types. Only two matrices needed to be defined, one
representing directed relationships among variables, the
other undirected relationships. McArdle’s approach, which
he called the RAM model, could easily be tested as a special
case of McDonald’s COSAN model.

McArdle’s specification was innovative, and offered
substantial benefits. It allowed path models to be grasped
and fully specified in their simplest form —— as linear
equations among manifest and latent variables. Instead of 18
model matrices, and a plethora of different variable types,
one only needed 3 matrices!
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Ironically, it took some time for McArdie’s work to gain
widespread acceptance, and it was some time before a
detailed algebraic treatment (McArdle and McDonald, 1984)
surfaced.

We begin with a brief description of the McDonald’s COSAN
model. Let X be a population variance — covariance matrix for
a set of variables. The COSAN model (McDonald, 1978)
holds if Z may be expressed as

3 = FyFp.F PR FoFy (8)

where P is symmetric, and any of the elements of any F
matrix or P may be constrained under the model to be a
function of the others, or to be specified numerical values. As
a powerful additional option, any square F matrix may be
specified to be the inverse of a patterned matrix. This
‘patterned inverse" option is critical for applications to path
analysis. A COSAN model with k F matrices is referred to as
"a COSAN mode! of order k."

Obvious special cases are: Orthogonal and obligue common
factor models, confirmatory factor models, and patterned
covariance matrices.

McDonald’s COSAN model is a powerful and original
approach which offers many benefits to the prospective
tester of covariance structure models. Testing and estimation
for the model were implemented in a computer program
called, aptly enough, COSAN (See Fraser and McDonald.
1988 for details on the latest version of this program, which
has been available since 1978).

In 1978, J.J. McArdle proposed some simple rules for
transiating any path diagram directly to a structural model. In
collaboration with McDonald, he proposed an approach
which yielded a model directly testable with the COSAN
computer program.

McArdle’s approach is based on the following covariance
structure model, which he has termed the RAM model:
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Let v be a (p+n) x 1 random vector of p manifest variables
and n latent variables in the path model, possibly partitioned
into manifest and latent variables subsets in ;m4 and |4,
respectively, in which case v = [m’ : ']’ . (This partitioning is
somewhat convenient, but not necessary.) For simplicity
assume all variables have zero means. Let F be a matrix of
multiple regression weights for predicting each variable in v
from the p+n—1 other variables in v. (F will have all diagonal
elements equal to zero.) In general, some elements of F may
be constrained by hypothesis to be equal to each other, or
to specified numerical values (often zero). Let r be a vector
of residuals. The path model may then be written

v=Fv+r (9

In path models, all endogenous variables are perfectly
predicted through the paths leading to them. Consequently,
elements of r corresponding to endogenous variables in v
will be null. The matrix F contains the regression coefficients
normally placed along the arrows in a path diagram. fij is the
path coefficient from v, to v;. If a variable v, is exogenous, i.e.,
has no arrow pointing to it, then row i of F will be null, and r;
= v;. Hence, the non—null elements of the variance
covariance matrix of r will be the coefficients in the
"undirected" relationships in the path diagram. Define P =
E(rr'). Furthermore, let W = E(w’), £ = E(mm’).

We wish to examine the implications of Equation (9) for the
structure of 2, the variance—covariance matrix of the
manifest variables. Regardless of whether the manifest and
latent variables were partitioned in v, it is easy to construct a
“filter matrix" J which carries v into m. If the variables in v are
partitioned into manifest and latent variables, we have J = [l
1 0],

m = Jv, (10)
and we may write

3 = E(mm’) = JE(w')J = JWJ". (11)
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Since (assuming 1—F is nonsingular) Equation (9) may be
rewritten in the form

v=(-f~T, (12)

we obtain

W=(-F~TP-F)~1 = F-~TPF-n—1". (13)
Equations (11) and (13) imply

3= JF-)~TPE-1y- 1y (14)

Equation (14) shows that any path model may be written as
a COS%N model of order 2, where Fiy=J=1[:0],and Fo =
(F-n—"

McArdle’s formulation may thus be characterized as
follows:

For convenience order the manifest variables in the
vector m, and the latent variables in the vector I. The path
model is then tested as.a COSAN model of order 2, in which

Fi= [Ip : pOn].

F5 is the inverse of a square matrix B of "of directed
relationships." B is constructed from the path diagram as
follows. Set all diagonal entries of B to —1. Examine the path
diagram for arrows. For each arrow pointing from v; to Vi,
record its path coefficient in position b;; in matrix B.

P contains coefficients for "undirected" paths between
variable v; and Vi recorded in positions Pij .

Obviously, EzPATH could have been written around the
elegant and straightforward RAM model. The approach
would require simply creating a list of manifest and latent
variables, ordering them, and filling the matrices B and P
with coefficients obtained by parsing PATH1 model
statements.
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However, the RAM model is somewhat wasteful in terms of
the size of some of its matrices. Bentler and Weeks (1979)
produced an alternative model which is somewhat more
efficient in the size of its matrices. Specifically, the F,and P
matrices are quite large in the RAM model, and have a large
number of zero elements. Bentler and Weeks showed how,
in situations where there are no manifest exogenous
variables {i.e., all manifest variables have at least one arrow
pointing to them), the McArdle—McDonald approach may be
modified to reduce the size of the model matrices.

Partition v’ = [ m, i, L], where the subscripts x and n refer
to "exogenocus" and "endogenous," respectively.

Then we may write v = Fv + rin a partitioned form as

mp I:1 F2 F3 my 0
In = F, Fs Fg Iy + 0 (15)
L, 0 0 0 I I

Now define n as a vector containing all the endogenous, or

"dependent" variables. n’ = [m, |]".

We may then write

0 =Bgn + T, (16)
where
Fy Fs Fq
By = r= (17)
F, Fs Fs
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We may now proceed with an algebraic development similar
to the RAM—COSAN equations.

n=Bgn + I, (18)
(I-Bgn =Tl (19)
n=(-By ', (20)
m,=[1:01(0-By) "M, =J(-By)~1r, (21)

whence, letting G = [1: 0], F, = (I - By)~',F; = I and P
= E(

:
L)

2 = GF,F4PF;'F,'G’ (22)

where Gis a filter matrix similar to F in the McArdle—
McDonald specification, F, = 82‘1, where B, is a matrix
containing path coefficients for directed relationships among
endogenous variables only, and having —1 as each diagonal
element, F4 contains path coefficients from exogenous
variables to endogenous variables only, and P contains
coefficients for undirected relationships, i.e., the variance—
covariance parameters for the latent exogenous variables.

This clever algebraic refinement allowed some of the virtues
of the McArdle approach to be retained, while expressing the
essential relationships in smaller matrices. (Notice how
several of the null submatrices in Equation 15 are
eliminated.) However, this model also had some minor
drawbacks. It required partitioning variables into exogenous
and endogenous types, and it did not allow direct
expression of manifest exogenous variables.

An alternative model allows us to treat manifest exogenous
variables explicitly. If we add a vector of manifest variables to
each of the two variable lists in the Bentler —~Weeks (1979)
model, and modify the regression coefficient matrices
accordingly, we arrive at the model used in EzPATH. In this
model, which is similar to one given by Bentler and Weeks
(1980), we partition variables into two groups.
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Let m, be a vector of manifest exogenous variables. Let s,’
= [m, m/ 1], and s,’ = [, m,’].

Then we may write

sy =Bsy + s, (23)
where
F 0 F
1 2
B= 0 0 0 (24)
F4 0 Fe
and
Fa F;
r= 0 | (25)
Fe Fg

Assuming a nonsingular |-B, we may rewrite Equation 23 as
s, = (I-B)"'Ts,. (26)

Let G be a filter matrix which extracts the manifest variables
from s, and let P = E(s,s,’) be the covariance matrix for s.

Then
m = Gs, = G(-B)~'Ts, (27)
and we arrive at the following model for covariance structure:

s =GB-)"rPre-n-'e (28)
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The model of Equation (28) allows direct correspondence
between all permissible PATH1 statements and the algebraic
model. There is no need to concoct dummy latent variables.
All possible types of relationships among manifest and latent
variables are accounted for. After a model is complete, all
variables can immediately be assigned to one of the 4
vectors m,, m,, |, or . All coefficients for (arrows) are then
assigned to the matrices F, through Fg- The column index
for a variable (in any of these 8 matrices) represents the
variable from which the arrow points, the row index the
variable to which the arrow points. Coefficients for wires are
represented in a similar manner in the matrix P.

The model of Equation 28 sacrifices some of the simplicity of
the RAM model, because variables must be assigned to 4
types before the location of model coefficients can be
determined. However, in our typology and with the EzPATH
diagramming rules the typing of each variable into one of 4
categories can be determined by looking only at that
variable in the path diagram. Because two headed arrows
are eliminated, a variable is endogenous if and only if it has
an arrowhead directed toward it. A variable is latent if and
only if it appears in an oval or circle. (if it is not already
obvious, let me point out that with two headed arrows one
must look away from the variable of interest to determine if
the variable is endogenous, because an arrowhead attached
to the variable and pointing to it might be two—~headed! Not
only is the EzPATH system less cluttered, but it is also
visually more efficient.)

Before we close this section, two points should be
emphasized. First, it is not clear which of the above models
is, in any overall sense, "superior" to the others. | chose the
EzPATH model of Equation 28 primarily because it offered,
to me, a good trade—off between certain conceptual and
computational advantages. However in the course of
programming EzPATH, | found, for reasons too complex to
describe here, that there were also definite advantages, both
conceptual and computational, in each of the other model
formulations.
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Second, it is possible to express some of the models as
special cases of the others. For example, the LISREL model
can be written easily as a RAM mode! and tested with
COSAN. To see why, suppose that the manifest and latent
variables were ordered in the v of Equation 9 so that v’ = [y’
X' ' £]. Then it follows immediately that we may write v =
F'v + 1", where

,.
cooco
oo oo
owo >
o >0

andr” =[e & { &].

If we define P as the covariance matrix of r’, then clearly we
can test any LISREL model as a COSAN model of the form

3 =GF =) PF - (30)

where G is a matrix which filters x and y from v.

B. Statistical Estimation

In the preceding section, | outlined the statistical model for 3,
which EzPATH attempits to fit to the sample data. If the
model fits perfectly in the population, then Equation (28)
holds. This is, of course, extremely unlikely to happen.

Itis, in fact, virtually certain that Equation (28) does not hold
exactly for your statistical population, and that in fact an
additional error term E op Should be added to the right side
of the equation. The size of the elements of this error matrix
would reflect how badly a particular model fit in the
population. You could find out what E op Was if you
somehow knew . (You would simply input 2, to EzPATH
and fit your model to it.) If you did, you would be faced with
a difficult problem of exactly how to quantify the information
in E.
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There is an additional complication. In practice, you do not
know 2. You only have S, an estimate of it from sample data.
It is this estimate, usually the ordinary sample covariance
matrix based on N independent observations, which we
attempit to fit with EzPATH.

Consequently, in practice we attempt to fit S rather than %,
with the model of Equation 28, and we have as a result of
this model fitting procedure a sample matrix of residuals
Esamp, In general the object of the estimation process is to

make the elements of Esamp as "small as possible" in some
sense. This notion of "smallness" is quantified in a

"discrepancy function."

Define 0 as the current vector of free parameter values.

Let Cq be our best attempt at reproducing $ by minimizing a
particular discrepancy function with the free parameter
values in 6. The corresponding values in the population are
2gand 3.

Co = G(Bg—1)"'MgPely’(By'~)~'G’ (31)

where By, I'y, and P, are obtained by inserting "best values"
for the free parameters. The discrepancy function F(S,Cy) is
a measure on S and Gy,

In general, if a model is identified (see Section 8.C below),
minimization of a discrepancy function satisfying the
following three restrictions will lead to consistent estimates
for the elements of 6:

F(8.Ce =0
F(S,Cg) = Qifandonly if § = C,
F(8,Cy) is continuous in S and Cyg

One simple measure of how badly Cj fits S is to examine the
sum of squared elements of Esamp' The function is known as
the Ordinary Least Squares discrepancy function, and may

be written
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FoLs(S.Ce) = 1/2Tr(S = Cg)? (32)

The OLS discrepancy function has a number of difficulties,
summarized nicely by Everitt (1984). In particular, it is not
scale free —— different scalings of the manifest variables can
produce different discrepancy function values. Moreover,
when calculated on sample discrepancies, simple sums of
squares may be inappropriate, because the elements of S
are not independent random variables, and because they
usually have different sampling variances.

The Generalized Least Squares discrepancy function
compensates for the these problems by, in effect,
standardizing each element of Esamp by an estimate of its
variability. The resulting discrepancy function is

FaLs = 1/2 Tr[(S — Cp)$™'12 (33)

A more complex function is the Maximum Likelihood
discrepancy function. This function may be written

FuL(S:Co) =In [Cql —In |S| + Tr(SCy~ ") — p (34)

where Tr() denotes the trace operator, |S| the determinant,
and p is the number of manifest variables.

If S is has a Wishart distribution, the model is identified, and
0 has t free parameters, then under fairly general conditions
(N=1)F(8.Cg) has a an asymptotic chi—square
distribution with p(p+1)/2 —t degrees of freedom.

This chi—square statistic, often described as a "goodness of
fit" statistic (but perhaps more accurately called a "badness
of fit" statistic) allows us to test statistically whether a
particular model fits 3 perfectly in the population (i.e.,
whether % = ). There is a long tradition of performing such
a test, although it is becoming increasingly clear that the
procedure is seldom appropriate.

Browne (1974, 1984) discussed the properties of an
alternative discrepancy function
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F(S.CqlCe™") = 1/27Tr [(S ~ C,p)C,~ 12 (35)

and showed that, under typical assumptions for maximum
likelihood estimation, the two statistics, (N—1) F(S,C,[C,™1)
and (N-1) FumL(S.Cg), will converge stochastically, and will
both be distributed as chi—square variates. Moreover,

as n— >, the probability that the two discrepancy functions
Fum and F(S,Cq| Co™") will be minimized by different @
vectors converges to zero.

In practice, then, one may essentially always obtain
maximum likelihood estimates by minimizing F(S.Cy| 09‘1)
rather than FraL-

C. Model Identification

For practical purposes it is usually not enough to have a
particular model which, when expressed in the framework of
Equation (28), reproduces 2. For a model to be of much
conceptual or practical value, its parameters must be

identified. That is, there must exist only one parameter vector
6 for which X = 3.

Perhaps the simplest example of a covariance structure
model which is not identified is a common factor analysis
model with two manifest variables and one common factor.
In this case (assuming the common factor has a variance of
1) the covariance structure model becomes

26=ﬁ,+U2

In this case the parameter vector 8 has 4 elements, the two
elements in f and the two diagonal elements of U2
Suppose 3. is
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We can see that if ' = [.7071 .7071], and the diagonal
elements of U2 are both .5, then 3, = Xy, and the model fits
perfectly. In this case 6’ = [.7071 .7071 .5000 .5000]. But
there are other vaiues of 8 which will reproduce %, equally
well. In fact there are infinitely many such values. For
example, let 8' = [.9000 .5555 .1900 .6914]

If we restrict U2 to be positive definite, clearly any two values
for the first two elements of 8 which have a product of .5,
and are both less than one in absolute value will produce a
discrepancy function value of zero. The diagonal elements
of U2 are then obtained by subtracting the square of the
corresponding element of f from 1.0.

Note that this is not a problem of the well known "rotational
indeterminacy" in factor analysis. (With only one factor, there
is no rotation.) Rather it is an example of a lesser known
phenomenon, namely, that the elements of U2 may not be
identified in the common factor model. If U2 is not identified,
then there may exist common factor patterns which
reproduce 2 equally well, but which are not obtainable from
each other by rotation.

Even in the relatively comfortable confines of the common
factor model, the phenomena of model identification are not
well understood. Some of the most significant textbooks on
factor analysis have failed to ever mention the problem.
Moreover, several authoritative figures in the history of
psychometrics have produced "results" on model
identification in factor analysis which they have later had to
retract or correct.

In general, necessary and sufficient conditions for
identification are not available. However, it is often possible
to determine that a model is not identified by showing that a
necessary condition is violated.

There are some results available on when U2 in the factor
model is definitely not identified. One of the best—known
was given by Anderson and Rubin (1956). They showed that
if, in unrestricted factor analysis, under any orthogonal or
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oblique rotation, there existed a factor pattern with only 2
non—zero elements in any column, then U2 is not identified.
Clearly then, if such a situation exists (see Everitt 1984, pp.
45-49 for an example), additional constraints will have to be
imposed to yield an identified solution. (For another example
of this situation, examine carefully the correlation matrix
discussed on page 409 of the SYSTAT manual.)

The Anderson—Rubin result has an important implication
which is often overlooked in discussions of the identification
issue. Namely, it may not be possible to prove identification
in the population without knowing 3! in other words the
same model may be identified for one 3, but not for another.
You cannot prove identification merely by counting
equations and unknowns.

For some (relatively simple) models, it may be possible to
prove identification by deriving unique equations, showing
each parameter as a function of the elements of 3.
Unfortunately this approach is often impractical, and so
checking for identification usually involves two stages.

First very obvious sources of lack of identification should be
removed. The most cbvious source of underidentification in
path models occurs when the measurement scale of an
exogenous latent variable is left indeterminate. Consider the
oblique common factor model, which can be written

3 = F¥F + U2

The variances of the common factors are found on the
diagonal of W¥. The factor loading coefficient for manifest
variable i on factor j is found in element F;.. It is easy to show
that unless restrictions are imposed on this model, the
variance for factor j and the loadings on this factor are jointly
indeterminate. To see why, suppose we were to multiply all
the factor variances by 2. If we were to multiply all the
columns of F by .7071, we would have exactly the same 2.
More generally, if we were to scale the diagonal of ¥ with a
diagonal scaling matrix D, we could compensate by scaling
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the columns of F with D™ . In other words, for positive
definite D,

3 = FYF + U2
= (FD~")(DYD)(D~'F) + U2
=FW'F" + U2

so that for any F and ¥ there are infinitely many F*and ¥"
which reproduce 3 equally well.

There are several ways of eliminating this problem in
practice. One way (the one | recommend) is to fix the
variances of the exogenous latent variables at 1. (This fix
may not be sufficient in all cases.) Another approach is to
apply some constraint to the factor loading coefficients
themselves. This approach is popular in structural models
where the main interest is in the relations between latent
variables. In this case, identification is often obtained by
fixing one of the coefficients on a particular variable to 1.

Once obvious sources of identification have been eliminated,
it is productive to examine whether either of the following
necessary (and easily tested) conditions for identification is
violated.

1. The number of degrees of freedom for the model
must be nonnegative. That is p(p+1)/2 = t, where p is the
order of 3, and t is the number of free parameters in the
model.

2. The Hessian (the matrix of second derivatives of the
discrepancy function with respect to the parameters) must
be positive definite.

Violation of either of these conditions can indicate an

identification problem, and EzPATH warns the user if they
are violated.

D. Unconstrained Minimization Technigue
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EzPATH produces its estimates for the elements of 9 by
minimizing a discrepancy function under choice of 8. The
problem of finding the 8 which minimizes F(8,Cy) is certainly
a difficult one. It is, in fact, non—trivial even when 9 has only
one element!

"Unconstrained minimization," i.e., the minimization of a
function of 8, is a major area in the field of numerical
analysis. The interested reader is urged to read an especially
clear treatment of this area is given by Dennis and Schnabel
(1983). Our description here is brief and non—technical.

The discrepancy function is minimized by an iterative
process. We start with initial estimates (we refer to them as
‘starting values") for the elements of 8. On each iteration, the
current value of the function is calculated, and the program
estimates, using derivatives, which direction of change for 6
will produce a further decrease in the discrepancy function.
6 is changed in that direction by an initial amount (called the
‘step length"), and the function is recalculated. It may be
that, according to certain criteria, the initial step went either
too far, or not far enough. In that case the step length may
go through several adjustments during an iteration.

Once a new 8 is found which has reduced the discrepancy
function by a reasonable amount, the whole cycle is

repeated until at least one of several stopping criteria are
met:

1. The discrepancy function is extremely close to zero.

2. An iteration fails to change any of the elements of 6
more than some very small percentage.

3. The relative gradient of the discrepancy function
(the relative rate of change of the discrepancy function
divided by the relative change in 6) is effectively a null vector.
This means that either a global or local minimum has been
found. [Some programs base stopping criteria on the
absolute gradient. This can lead to premature termination of
the algorithm in cases where the discrepancy function at the
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minimum is small. The absolute gradient criterion has a
number of other shortcomings as well. See Dennis &
Schnabel (1983, p. 159) for details.]

To prevent overflow problems to rounding error in internal
calculations, our algorithm reverts to an absolute gradient
criterion in cases where the discrepancy function is less than
1079,

In general, with path models we find that the more elements
there are in 8, the more difficult it is to find the actual 6 which
minimizes the discrepancy function. Thus, all other things
being equal, we would expect to need more iterations to
converge to a solution for a large problem than for a small
one. Unfortunately, the larger the problem, the longer each
iteration tends to take. Consequently, good initial estimates
can be very important for large problems. Indeed, without
good initial estimates, even the best "state of the art" non—
linear optimization routine will fail to find solutions for some
problems.

EzPATH uses the algorithms given in the appendix of Dennis
and Schnabel (1983), and also described in Schnabel,
Koontz, and Weiss (1985}, to produce its minimization. In
particular, the factored secant, BFGS update method, with
linesearch algorithm A.6.3.1 was used, and suggestions on
pages 281 —282 of Dennis and Schnabel (1983) were
implemented to reduce storage requirements. The line
search algorithm is a backtracking line search using
safeguarded quadratic interpolation for the first backtrack
and safeguarded cubic interpolation for any subsequent
backtracks at each iteration.

E. Fit indices

Besides the chi—square value and its probability level,
EzPATH prints a number of indices of fit which can be used
to interpret how well a model fits the data. The indices
printed here are all single model indices, i.e., values which
can be computed from a single model tested on one data
set. Several of these indices are new and are my own
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cr.eation, and so | will describe the rationale behind them in a
fair amount of detail. Full technical details are given in Steiger
(1989).

Accept-support hypothesis tests are subject to a host
of problems. In particular, of course, the traditional
priorities between Type | and Type Il error are reversed.

76

1. General Theoretical Orientation

When we attempt to assess how well a model fits a
particular data set, we must realize at the outset that
the classic hypothesis —testing approach is
inappropriate. Consider common factor analysis. When
maximum likelihood estimation became a practical
reality, the chi—square "goodness of fit" statistic was
originally employed in a sequential testing strategy.
According to this strategy, one first picked a small
number of factors, and tested the null hypothesis that
this factor model fit the population X perfectly. If this
hypothesis was rejected, the mode! was assumed to
be too simple (i.e., to have too few common factors) to
fit the data. The number of common factors was
increased by one, and the preceding procedure
repeated. The sequence continued until the hypothesis
test failed to reject the hypothesis of perfect fit.

Steiger and Lind (1 980) pointed out that this logic was
essentially flawed, because, for any population X (other
than one constructed as a numerical example directly
from the common factor model!) the a priori probability
Is essentially 1 that the common factor mode! will not fit
perfectly so long as degrees of freedom for the chi—
square statistic were positive.

In essence, then, population fit for a covariance
structure model with positive degrees of freedom is
never really perfect. Testing whether it is perfect makes
little sense. It is what statisticians sometimes call an
‘accept—-support" hypothesis test, because accepting
the null hypothesis supports what is generally the

experimenter’s point of view, i.e., that the model does
fit.
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If the proponent of a model simply performs the chi—
square test with low enough power, the model can be
supported. As a natural consequence of this,
hypothesis testing approaches to the assessment of
model fit should make some attempt at power
evaluation. Steiger and Lind (1980) demonstrated that
performance of statistical tests in common factor
analysis could be predicted from a noncentral chi—
square approximation. A number of papers dealing
with the theory and practice of power evaluation in
covariance structure analysis have been published
(Matsueda & Bielby, 1986; Satorra and Saris, 1985;
Steiger, Shapiro, & Browne, 1985). Unfortunately,
power estimation in the analysis of a multivariate model
is a difficult, somewhat arbitrary procedure, and such
power estimates have not, in general, been reported in
published studies.

The main reason for evaluating power is to gain some
understanding of precision of estimation in a particular
situation. An alternative (and actually more direct)
approach to the evaluation of precision is to construct
a confidence interval on the population noncentrality
parameter (or some particularly useful function of it).
This approach, first suggested in the context of
covariance structure analysis by Steiger and Lind
(1980) offers two worthwhile pieces of information at
the same time. it allows one, for a particular model and
data set to express (1) how bad fit is in the population,
and (2) how precisely the population badness of fit has
been determined from the sample data.

2. Noncentrality based parameter estimates and
confidence intervals

Let S be the sample covariance matrix based on N
observations, and for notational convenience, define n
= N—-1. Cg is the attempt to reproduce S with a
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FEI ) = 12Tr[(E ~ 5,05, 12 (36)

E(X) = v + A,

particular model and a particular parameter vector 6,
and C, the value of C, obtained when 6 is the vector
of maximum likelihood estimates obtained by
minimizing the discrepancy function of Equation 34.
Equations 34 and 35 give two alternative chi—square
statistics for testing structural models. Suppose one
has obtained maximum likelihood estimates. Then
nF(S,C4|Cy~ ") has an approximate asymptotic
noncentral chi—square distribution with p(p+1)/2 — t
degrees of freedom, where t is the number of free
parameters in the model, and p is the order of S. The
noncentrality parameter is nF”*, where

F" is the value of the statistic in equation (35) obtained
if S is replaced by the population covariance matrix 3,
and maximum likelihood estimation is performed on X
instead of S, yielding EML. Hence, for the quadratic
form statistic, the noncentrality parameter is in effect
the "population badness of fit statistic."

Interestingly, if one divides by n, one obtains a
measure of population badness of fit which depends
only on the model, %, and the method of estimation.

If one has a single observation from a noncentral chi—
square distribution, it is very easy to obtain an
unbiased estimate of the noncentrality parameter. By
well known theory, if noncentral chi—square variate X
has noncentrality parameter A and degrees of freedom
v, the expected value of X is given by

whence it immediately follows that an unbiased
estimate of A is simply X — v. Consequently a "large
sample unbiased" estimate of F* in Equation 35 is X -
v)/n. Since F* can never be negative, the simple
unbiased estimator is generally modified in practice by
converting negative values to zero. The estimate
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F* = Max {[(X—Vv)/n].0} (37)
is the result.

It is also possible, by a variety of methods, to obtain,
from a single observation from a chi—square
distribution with known v, a maximum likelihood
estimate of the noncentrality parameter K, and
confidence intervals for K as well. (See, e.g., Saxena
and Alam, 1982; Spruill, 1986, Steiger, 1989.)

Since we can obtain a maximum likelihood estimate
and confidence interval for nF”, we can obtain a
confidence interval and maximum likelihood estimate
for F* by dividing by n.

EzPATH obtains the maximum likelihood estimate and
confidence interval for nF” by iterative methods. (See
Steiger, 1989 for technical details.) The "point estimate"
of the "population noncentrality index" printed by
EzPATH is the result of the maximum likelihood
estimation procedure. If the test statistic were
distributed exactly as a noncentral chi—square, then
this procedure would yield a maximum likelihood
estimate. The term "asymptotic MLE" is more
appropriate here, since the noncentral chi—square
distribution is only an asymptotic result. We will refer to
such estimators as AMLE’s throughout the remainder
of the text.

We mentioned above a simple unbiased estimate. The
AMLE procedure always yields a larger value than the
unbiased estimate, so we might view the AMLE
approach as, in practice, a slightly more conservative
alternative.

The population noncentrality index is a quadratic form,
and as such is a weighted sum of squares of the
residuals. Suppose we were to place the non—
redundant elements of % in a vector o. Let the

© 1989, SYSTAT, inc. 79



80

Maximum Likelihood estimates of 2, for a particular
structural model be piaced in a vector 0", and the
residuals in a vector e. Then

*
o=0 +e.

Furthermore (see Browne, 1974 for details), F* can be
written in the form

F* = e'We

where nW is the inverse variance—covariance matrix of
* .

the elements of S. F can thus be viewed as a weighted

sum of squared residuals.

3. The Population RMS Index

The Population Noncentrality Index F (PNI) offers
some significant virtues as a measure of badness of fit
(see, e.g., Steiger & Lind, 1980; McDonald, 1989). First,
it is a weighted sum of discrepancies. Second, unlike
the Akaike information criterion, for example, it is
relatively unaffected by sample size.

However, there are two obvious problems with using
the population noncentrality index as an index of
population badness of fit.

The PNI is not in the metric of the original parameters,
because the quadratic form squares the residuals.

The PNI fails to compensate for model complexity. In
general, for a given X, the more complex the model the
better it fits. A method for assessing population fit
which fails to compensate for this will inevitably lead to
choosing the most complex models, even when much
simpler models fit the data nearly as well. The PNI fails
to compensate for the size or complexity of a model.
Hence it has limited utility as a device for comparing
models.
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The RMS index, first proposed by Steiger and Lind
(1980), takes a relatively simplistic (but not altogether
unreasonable) approach to solving these probiems.
Since model complexity is refiected directly in the
number of free parameters, and inversely in the
number of degrees of freedom, we divide the PN! by
degrees of freedom, and then take the square root to
return the index to the same metric as the original
parameters.

Hence

_ (F*/V)1/2 (38)

The RMS index R”" can be thought of as a root mean
square standardized residual. Values below .10
indicate a good fit, values below .05 a very good fit.
Point estimates below .01 indicate an outstanding fit,
and are seldom obtained.

in practice, we obtain point and interval estimates of
the population RMS index as follows. First, we obtain
point and interval estimate of the PNI. [The point
estimate we use is the asymptotic MLE. We could just
as easily use the unbiased estimate. It is not yet clear
which would be superior, but the differences between
the two approaches are likely to be trivial.] Since all
these are non—negative, and R" is a monotonic
transform of the PNI, we obtain point estimates and a
confidence interval for R” by inserting the
corresponding values for F* in Equation 38.

4. Population Gamma Index I

Tanaka and Huba {1985, 1988) have provided a
general framework for conceptualizing certain fit
indexes in covariance structure analysis. In their first
paper, Tanaka and Huba (1985, equation 19) gave a
general form for the sample fit index for covariance
structure models under arbitrary generalized least
squares estimation.
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In the Tanaka—Huba treatment, we assume that a
covariance structure model has been fit by minimizing
an arbitrary GLS discrepancy function of the form

F(S, Cg) = 1/2Tr [(S — Cx)VI? (39)
or, equivalently (see Browne, 1974)
Fs,c)=[s - cTW[s - ') (40)

where s is the vector containing p*=p(p+1)/2 non—
duplicated elements of the sample covariance matrix S,
and p is again the number of observed variables. c” is
the p*x1 vectorof non—duplicated elements of the
reproduced covariance matrix Cq.

Vin Equation 39 and W in equation 40 are arbitrary
matrices. Appropriate choice of V or W can yield GLS
or ML estimators. For example, minimization of
Equation 39 with V = S~ if S has a Wishart distribution
yields the well—known GLS estimators (Browne, 1974).
Setting V = Ce‘1 yields maximum (Wishart) likelihood
estimators under the same conditions. (Browne gives
formulas for obtaining W from V.)

The Tanaka—Huba fit index can be written as

v=1- [e'We/s'Ws] (41)
where e is the vector of residuals given by

e=s-c"
In their more recent paper, Tanaka and Huba (1988)
demonstrate a deceptively simple, but important result
which holds for models which are invariant under a
constant scaling function (ICSF). A covariance

structure model is ICSF if multiplication of an y
covariance matrix which fits the model by a positive
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scalar yields another covariance matrix which also
satisfies the model exactly (though possibly with
different free parameter values).

If a model which is ICSF has been estimated by
minimizing a discrepancy function of the form given in
Equations 39 and 40, then

e'Wc" = 0, (42)
i.e., e and ¢ are orthogonal "in the metric of W," and,
consequently,

s'Ws = ¢"Wc" + e'We. (43)

If Equation 43 holds, then y may be written
v =c"Wc"/s'Ws = 1 — [e'We/s'Ws]. (44)

In this form, we see that y defines a weighted
coefficient of determination.

Under Maximum Wishart Likelihood estimation, V =
Co~!. One immediately obtains

F'=eWe =1/27Tr [(S - Cy)Cy™"12 (45)

SWs = 1/2Tr[SC,~ 12, (46)
whence

L =1 = {Tr [SCy™" =112/ Tr[SC4~"1%} (47)

which is equivalent to the Joreskog and Sérbom (1984)
GFl index.

Moreover, if the model is ICSF, then, under maximum
Wishart likelihood estimation, we have the simplifying
result (Browne, 1974, Proposition 8)

© 1989, SYSTAT, Inc. 83



and so

™

Tr (SCy™ 1) = p. (48)

Substituting in Equation (45), we find

F* = eWe = 1/2 [Tr[SC,~ 112 - p], (49)

L=P/28Ws =p/Tr[SC,~ "2 (50)

Tanaka and Huba (1985, 1988) based their derivation
gf v on sample quantities. However, in principle we are
interested in a sample index only as a vehicle for
estimating the corresponding population index. The
corresponding population quantities are obtained by

substituting Z for S, and % for Cg in Equations 49 and
50.

We have

Mo=p/Tr[E3,~ "2 (51)

I'; can be thought of as a weighted population
coefficient of determination for the multivariate model.
(It may also be thought of as the population equivalent
of the Jéreskog—Sérbom GFl index.)

An accurate point estimate for Iy will provide useful
information about the extent to which a model
reproduces the information in %. A confidence interval
however, provides even more useful information, ’
becayse it conveys not only the size of Iy, but also the
precision of our estimate.

Let F* as defined in Equation 36 be the Population

Noncentrality Index. From Equations 49 and 50, it is
easy to see that

My =p/[2F +p] (51)

84
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Equation 51 demonstrates that, under maximum
ikelihood estimation with ICSF models, Iy can be
expressed solely as a function of the Population
Noncentrality Index and p, the number of manifest
variables. Any consistent estimate of F* will yield a
consistent estimate of I'y when substituted in Equation
51.

Equation 51 implies that an asymptotic maximum
likelihood estimate (AMLE) for the population
noncentrality index F* may be converted readily to an
AMLE for Iy, simply by substituting the AMLE for F*in
Equation 51. Similarly, substitution of the endpoints of
the confidence interval for F in Equation 51 will
generate a confidence interval for .

It is perhaps worth adding a conjecture that the sample
index yy,_of Equation 49 can be a rather biased
estimate of the corresponding population index My at
moderate sample sizes. To see why, suppose that, for
a moderately large n, the asymptotic distributional
result holds exactly. Then, recalling the results in
Equations 36 and 37 and the accompanying
discussion, we may show that

E {Tr(SC,~ )2} = Tr{Z3%,~"}2 + vin
] 7]

Since, for moderate n and large v, the denominator of
Equation 49 is positively biased, one suspects {Monte

- Carlo evidence would be necessary to confirm this)

that this estimate (i.e., the GFI calculated by LISREL Vi),
is a biased estimate of the population gquantity (ry
which we are really interested in, and that, in general,
the GFI index will tend to underestimate I'y.

5. Adjusted Population Gamma Index My

F1, like F*, fails to compensate for the effect of model
complexity. Consider a sequence of nested models,
where the models with more degrees of freedom are
special cases of those with fewer degrees of freedom.
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(See Steiger, Shapiro, and Browne, 1985, for a
discussion of the statistical properties of chi—square
tests with nested models.) For a nested sequence of
models, the more complex models (i.e., those with
mpre free parameters and fewer degrees of freedom)
will alway.s have I 1 coefficients as low or lower than.
those which are iess complex.

Goaness of fit, as measured by Iy, improves more or
Ies.s inevitably as more parameters are added. The
adjusted population gamma index I o attempts to
compensate for this tendency.

Just as Iy is computed by subtracting a ratio of sums
of squares from 1, T, is obtained by Subtracting a
corzespondlng ratio of mean squares from 1. Leto” be
ap [=p(p+1)/2] x 1 vector of non—duplicated
elemgnts of the population reproduced covariance
matrix 29 for a model with v degrees of freedom, and o
a vector of corresponding elements of 3. Let e=0-—
o0 . Then Myis

I

1 - [eWeN)/[o'Wo/p"]

1= [p'MI-T]. (52)
Consistent estimates and confidence intervals for I"
may thus be converted into corresponding quantitie13
for ', by applying Equation 52.

6. J6éreskog—Sérbom (1984) GFI.

This sample based index of fit is computed as in
Equation 47.

7. Jéreskog—Sérbom (1 984) Adjusted GFI.

See Equation 52 above.

8. Rescaled Akaike (1973) Information Criterion.
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In a number of situations the user must decide among
a number of competing nested models of differing
dimensionality. (The most typical example is the choice
of the number of factors in common factor analysis.)
Akaike (1973, 1983) proposed a criterion for selecting
the dimension of a model. Steiger and Lind (1980)
presented an extensive Monte Carlo study of the
performance of the Akaike criterion. Here we rescale
the criterion {without affecting the decisions it indicates)
so that it remained more stable across differing sample
sizes. The rescaled Akaike criterion is as follows.

Let Fy,, | be the maximum likelihood discrepancy
function and q, be the number of free parameters for
the model M,. Let N be the sample size

Select the model M, for which

Ay = FuLi + 20,/(N=1)

is a minimum.
9. Schwarz’s (1978) Bayesian Criterion

This is similar in use to Akaike’s index, except one
selects the model M, for which

Sk = FML,k + In (N) qk/ (N_1)

is a minimum.

10. Browne—Cudeck (1989) Single Sample Cross—
Validation Index.

Browne and Cudeck (1989) recently proposed a single
sample cross—validation index as a clever follow—up to
their earlier (Cudeck & Browne,1983) paper on cross—
validation. Cudeck and Browne had proposed a

cross —validation index which, for model k in a set of
competing models M, is of the form FML(SV,C*k). In this
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case, F is the maximum likelihood discrepancy
function, S, is the covariance matrix calculated on a
cross—validation sample, and C"'k the reproduced
covariance matrix obtained by fitting model M, to the
original calibration sample. In general, better models
will have smaller cross—validation indices.

The drawback of the original procedure is that it
requires two samples, i.e., the calibration sample for
fitting the models, and the cross—validation sample.
The new measure estimates the original cross—
validation index from a single sample.

The measure is

S = FumLk + 29, /(N—-p-2)

where dy is the number of free parameters in model k,
p is the number of manifest variables, and N is the
sample size.

12. Historical Background.

My ideas on fitting of covariance structure models have
a documentable history dating back to 1980. | have
long delayed publication of some of this material,
because | felt some key theoretical aspects were
ambiguous or missing. However, | feel that it is perhaps
worth mentioning that t first presented (in print and in a
public forum) a technique of noncentrality parameter
interval estimation as a means of assessing badness of

fit in covariance structural models almost a decade
ago.

In 1980, | presented a paper (Steiger and Lind, 1980) at
the Psychometric Society Meetings which proposed
sever_al ideas concerning goodness of fit evaluation in
covariance structure analysis.

The major ideas were
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1. That the power of the likelihood ratio test could be
closely approximated by a noncentral chi—square
distribution,

2. That the noncentrality parameter of that distribution
might serve, with some maodification, as an excellent
measure of "badness of fit,"

3. A confidence interval approach to the assessment of
the population badness of fit offered significant
advantages over a point estimation approach,

4. A proper measure of badness of fit must attempt to
compensate for model complexity.

At that time these ideas were novel.

The paper also presented an extensive Monte Carlo
analysis of the performance of the likelihood ratio test,
Akaike’s information criterion, and Schwarz’s Bayesian
criterion for selecting the number of common factors in
factor analysis. The paper was presented May 30,
1980, and a written handout (available from me by
request) was distributed to those in attendance at lowa
City. Two consecutive afternoon symposia (one on
Covariance Structures, one on Factor Analysis) were
held in the room where | gave my talk. The identity of
some of those present may be of some historical
interest, and can be ascertained by reading pages

. 504—505 of the 1980 Psychometrika, where a listing of
symposia chairmen and paper presenters at the two
sessions is given.

8. EzPATH Technical Output

When any mode! is analyzed, EzPATH prints out technical output
concerning the estimation process. When the DUAL option is
invoked, EzPATH prints only the iteration history and summary for
the OLS estimation, then proceeds to perform Maximum
Likelihood estimation, for which it gives complete output.
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A. Memory Usage Table.

EzPATH uses a dynamic memory allocation scheme which
requires that a model be parsed before memory to analyze it
is allocated. The program uses two main storage regions,
one for integers and one for floating point variables. Prior to
estimating any model, the program prints the amount of
each storage region required for that particular model. If
memory requirements are exceeded, the model is not
analyzed.

B. lteration History.

During iteration a report of the values of the discrepancy
function, and possibly gradient and coefficient values as well
is printed. This can be useful in evaluating the progress of
iteration.

C. Results of lteration

The final Discrepancy Function Value, Largest Absolute
Gradient, and number of iterations is printed. The largest
absolute gradient is useful diagnostic information. It should
be close to zero (i.e., on the order of 10~3 or less) if a true
minimum has been found.

D. Chi—Square Test Statistic

The sample size, degrees of freedom, and chi—square value
are printed. The Probability Level of the chi—square is the
probability of obtaining a value greater than or equal to the
obtained value.

It is important to keep in mind that, strictly speaking, the
chi—square statistic may not be valid if (1) the manifest
variables do not have a multivariate normal distribution; (2)
the sample correlation matrix is used instead of the sample
covariance matrix, or (3) the sample size is small.

E. Fit Indices
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As part of its technical output, EzPATH prints the Asymptotic
MLE’s and confidence intervals for F*, R*, M, and '2. They
are referred to in the output as "Population Noncentrality
Index," "Steiger—Lind RMS Index," "Population Gamma
Index,” and "Adjusted Population Gamma" respectively.lt also
prints a number of other indices. The theory behind these
indices is given in detail in section VIIIE.

The relatively nontechnlcal user will probably find the
confidence intervals on R* and I" » to be the most useful. R
can be thought of as a root mean square standardized
residual, adjusted for model complexity. Values of this index
below .10 indicate a reasonably good fit, while values below
.05 generally indicate an excellent fit.

I, can be thought of as a coefficient of model determination,
adjusted for model complexity. Values above .90 indicate
good fit, values above .95 an excellent fit.

Excessively wide confidence intervals for the various fit
indices indicate inadequate statistical power in the particular
testing situation. In such a situation, a high probability level
for the chi--square statistic might not necessarily mean that
the model fits well. (Remember, the chi—square test of fit is
an accept—support test. Low power tends to produce
results supporting a model!)

Very narrow confidence intervals indicate high precision of
estimate. In general, if the confidence interval for R* or r,is
very narrow and the indices are not near the endpoints of
their range, the chi—square probability is no longer very
relevant, because statistical power is high.

For example, suppose the 90% confidence interval for P
ranged from .91 to .92. This would mean that, with very hlgh
precision, we had determined that model fit was quite good,
though not outstanding, and almost certainly not perfect. In
this case, the traditional chi—square test of fit would almost
certainly reject with an extremely low p—level!
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Asymptotic MLE’s and confidence intervals for fit indices are
obtained by an iterative procedure. If the procedure fails to
converge, an error message will be generated.

F. Gamma Coefficient Confidence Interval Trace Criterion

As discussed in the chapter on theory,the point estimates
and confidence intervals for the Iy and I, coefficients, to be
strictly valid, require that proper maximum likelihood
estimates be obtained, and that the model be invariant under
a constant scaling factor (ICSF). If these assumptions are
satisfied, then the following equation holds:

Trace Criterion = Tr(SC,™") —p = 0

If the trace criterion is not acceptably close to zero, it
indicates that at least one of the necessary conditions for
strict validity of the gamma coefficient confidence interval
and point estimates has been violated.

G. Standard Errors. (Optional)

When maximum likelihood estimates are obtained, the user
has the option of requesting estimated standard errors for
each of the free parameters estimated by the program.
These standard errors are printed immediately after the
value of the free parameter, with the prefix "SE=".

These standard errors can be used to assess whether a
parameter is significantly different from zero. A simple, and
rather crude approach, is to calculate an asymptotic z score
(some writers call this a "T—score") value for a parameter by
dividing by the square root of its estimated standard error. In
evaluating the significance of a coefficient, one must
remember the Bonferonni inequality. In a model with many
parameters, individual coefficients should be tested at a fairly
stringent probability level. The crude criterion adopted by
many practitioners is to declare a coefficient "significant" if
its absolute value is more than two standard errors. This is
probably not conservative enough, especially when larger
models are tested.
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Standard errors in EzPATH are computed using the formulas
in Browne (1982), pages 105—107. The standard errors are
obtained by inverting the estimated Hessian. If a model is not
identified, this matrix will be singular (or possibly quite ill—
conditioned, due to rounding error). In that case, standard
errors are not printed. If the Hessian matrix is not positive
definite or round—off error occurs, a message to that effect
will be given, and output will be printed without the standard
errors.

H. Optional Output (Produced by the PRINT=LONG
command)

1. Input Matrix (S)

The input covariance or correlation matrix will be
formatted and printed.

2. Reproduced Matrix (C)

The "best" attempt to reproduce the input matrix using
the model will be printed. This is a useful feature if you
wish to create a population matrix corresponding to a
particular model. (See page xxx).

3. Standardized Residuals

Residuals are useful sometimes for locating the
"problem areas" in fitting a model. Large residuals for a
particular variable or pair of variables will often indicate
areas of a model which need further attention.

Raw residuals depend, of course, on the scaling of the
covariance matrix. Consequently, EzPATH prints
standardized residuals, i.e., residuals divided by the
standard deviations of the variables. Each entry in the
standardized residual matrix is (sij — c8ij)/(si sj).
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EzPATH also computes the root mean square
standardized residual, and the mean absolute
standardized residual as indices of fit.

4. Normalized Residuals

Standardized residuals compensate for scale
differences, but fail to take into account that different
elements of a covariance matrix have different sampling
variabilities. The normalized residuals are computed by
dividing each element of the matrix of residuals by the
square root of its estimated asymptotic variance. We
use the same formula as LISREL VI for computing
these indices. (Note: the formula is given incorrectly in
a number of sources, including the LISREL VI manual.
The formula used for the estimated variance is  (cg;
Cgj + Ceija) / (n—1).

Normalized residuals can be SAVEd to a file for plotting
or further analysis. A normal probability plot of the
normalized residuals can sometimes provide evidence
of violations of statistical assumptions underlying
maximum likelihood estimation.

I. Results for the Fitted Model

The final step in EzPATH output is to print the results of the
estimation process in the PATH1 language. Immediately
before printing the results, EzPATH prints the word MODEL
on a separate line. This saves you the trouble of adding the
command if you decide to modify the model and recycle the
output.

Model coefficient values resulting from the estimation
process are printed in braces immediately after the
coefficient number. If standard errors have been requested,
they are also printed within the braces following the identifier
"SE =".

If you recycle EzPATH output during a model modification,
you do not need to erase the standard error information
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from within braces. The program ignores this information
when reading a set of PATH1 statements as inpuit.
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9. lilustrative Problems and Examples

A. A Confirmatory Factor Analysis Model
Everitt (1984 p. 45—52) discusses, in considerable detail, a
confirmatory factor analysis of a data set in Child (1970). The
EzPATH diagram for this model is given in Figure 9.

Data for this example are in the file CHILD.SYS on the
distribution diskette. Below is the PATH1 specification for this
model along with some additional commands. These
statements are contained in the file CHILD.CMD on the
distribution diskette. To produce the output for the CHILD
example, simply type

SUBMIT CHILD

Output for the analysis will be placed in a file called
CHILD.DAT.

This PATH1 command structure, shown on the next page, is
particularly instructive, because it demonstrates how
appropriate use of spacing and comments can add greatly
to the readability of a PATH1 file.
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Figure 9. Path Diagram for a Confirmatory Factor Model from Everitt (1984).
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PAGE SCREEN=SCROLL

USE CHILD

METHOD=ML

NUMBER=93

OUTPUT CHILD

MODEL

* Child Example from Everitt, p. 45-50

B R L At A e T d g T T T T 2o

* This is a straightforward confirmatory common factor analysis *
* with 3 common factors. The common factors are called F1, F2, ¥3. *
* N is not given in Everitt’s book, but, by reverse computation, -
* we have decided it must be 93. *

R R R B R a2 L 2 4

T R A R R AL R R g R T ST T TR PP T AP e
* Here are the loadings of the common factors on the observed variables =
* For identification, F1 is constrained to load equally on X1 and X2, *

- a fact which Everitt discusses in the book. *
R T R T T L R e L f at L R ST T S

(F1)-1->[X1]
-1->[X2]

(F2)-2->[X3]
-3->[X4]
—4->[X5)
-5->[X6]

(F3)-6->[X7)

-7->[X81
L R R L L L R d T s )
* Here is the correlation between factors 2 and 3 >
L S R L AL d R R R R R T T R I T

(F2)-8-(F3)
T T T T T R T L s L 2 T s
* And finally, the unique factors and their loadings. *
L T S T R d T P R T a L T R S R

(D1)-9->(X1]

(D2)-10->[X2]
(D3)-11->[X3]
(D4)-12->[X4)
(D5)-13->[X5]
(D6)-14->[X6]
(D7)-15->[X7]
(D8)-16->[X8]

ESTIMATE
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B. Path Models for Home Environment and Mathematics
Achievement

Jéreskog and Sérbom (1982) discuss several structural
models which they fit to data from a studyof home
environment and school achievement by Keeves (1972).

Keeves studied 215 sixth grade boys over a one year period
and measured initial mathematics achievement (Y. a
structural dimension in the home (X4), an attitudinal
dimension of the home environment(X,), a process
dimension of the home environment (X3), and final
mathematics achievement (Y,). The correlation matrix for the
Keeves data is in a file called KEEVES.SYS on the
distribution diskette.

i

According to Jéreskog and Sérbom,

The three home environment dimensions were
derived as the principal components of three
sets of items which sampled each of the three
home domains. Thus, the structural dimension
was based on home interview items which
determined the level of father’s education,
father's occupation, mother’s occupation before
marriage, religious affiliation, and number of
children in the family. The attitudinal dimension
was based on parents’ attitudes toward the
child’s present education, future education, and
occupation, and the parents’ aspirations for
themselves. The process dimension was based
on relations between home and school, use of
books and libraries, parents’ help with formal
school work, and arrangements for doing home
assignments.

Cooley and Lohnes (1976) analyzed Keeves’ data with a
path model on the observed variables. This mode!,

essentially a standardized multiple regression, is shown in
Figure 10.
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Figure 10. Path Diagram for Cooley and Lohnes Model

PATH1 statements corresponding to this model can be
found in a file KEEVES1.CMD.

Jéreskog and Sérbom fit two structural models of their own
to the Keeves data. The EzPATH diagram for the first
(Figure 3A in their paper) is in Figure 11.

This model, according to Jéreskog and Sérbom,

takes measurement errors in the home variables
into account and treats them merely as fallible
indicators of an aggregate construct variable
"home".

PATH1 statements for this model are in a file called
KEEVES3A.CMD. on the distribution diskette.

An alternative model is represented in the EzPATH diagram
in Figure 12. This model incorporates errors of measurement
in the measures of mathematics achievement. It assumes
that reliabilities for the two measures are known to be .90.
Consequently the path coefficients representing true score
and error variance coefficients are shown as fixed in the
diagram. PATH1 statements for this model are in a file called
KEEVES3B.CMD on the distribution diskette.
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Figure 11. EzPATH Diagram Corresponding to Figure 3A, Jéreskog and
Sérbom (1982)
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Figure 12. EzZPATH Diagram Corresponding to
Figure 3B, Jéreskog and Sérbom (1982)
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C. Principal Components Analysis

The models we have discussed so far are, for the most part,
extensions of the common factor model. Indeed, in the
LISREL model formulation, the typical model is conceived as
a set of structural relations between two distinct sets of
common factors.

The common factor model has a number of conceptual
problems connected with it. One of the most interesting, and
oft—debated problems is that of factor indeterminacy. Factor
indeterminacy refers to the fact that more than one different
set of latent variables will fit exactly the same common and
unique factor loadings for a given set of observed variables.
Suppose, then, you believed you had "identified” a common
factor on the basis of a factor analysis. It might turn out that
two different versions of this factor (in the population), so
different that they correlate zero, might fit all your model
parameters equally well.

This raises some interesting logical problems. What sense
does it make to say you have found "a" common factor,
when different versions of the same factor exist, and these
versions produce scores that correlate no more than two
columns of random numbers?

Factor indeterminacy occurs, basically, because in common
factor analysis we seek to determine more latent variables
than we have observed variables. This cannot, in general be
done.

Factor indeterminacy is not a sampling problem. It occurs in
the population as well as the sample.

There are many conflicting views on how one should
conceptualize factor indeterminacy. The issue is almost as
old as factor analysis itself and was discussed heatedly in
the 1920’s and 1930’s, although the advent of digital
computers, and the ensuing wave of enthusiasm for factor
analysis, swept it temporarily out of the collective
consciousness of the psychometric community. Literature
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reviews by Steiger and Schénemann (1978) and Steiger
(1979) contain numerous references for the interested
reader. McDonald and Mulaik (1979) provide an alternative
account.

Partly because of the indeterminacy problem, and partly for
reasons of computational efficiency, many data analysts
prefer component analysis over factor analysis. Component
models express their "latent” variables (i.e., components) as
explicit linear functions of the observed variables, and
consequently are not plagued by factor indeterminacy
problems.

Schénemann and Steiger (1976) presented a detailed
theoretical analysis of the relationship between component
and factor analysis. They described a data analytic system
called regression component analysis which shares many of
the properties of common factor analysis, but is fully
determinate. Schénemann and Steiger demonstrated how all
factor models have an equivalent, falsifiable, regression
component model. Hence the common factor model could
be re—expressed in terms of components, a point of view
echoed from a different perspective by Bartholomew (1984).
They concluded that, in the vast majority of cases, little if
anything would be lost by substituting a modei based on
components for one based on common factors.

Extensive evidence supports this point of view. Velicer &
Jackson (1989) have recently provided a succinct summary
of this evidence. They demonstrate that most arguments for
the superiority of factor analysis over component analysis
are based on obvious fallacies or questionable premises.

Although the FACTOR module provides a superior facility for
performing principal components analysis, it is possible to
extract principal components using EzPATH.

The key is to recall that common factors with no unique
variance are components. The first sample principal
component is that linear combination of the observed
variables which has maximum variance. However, the first
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standardized principal component can also be defined as
that unit variance variable whose covariances with the
observed variabies, when placed in a vector f, have the
property that Tr (S — )2 is a minimum.

Consequently, if we write a single cornmon factor model, but
leave out the unique variances, and estimate using the
METHOD = LS option, we will obtain loadings for the first
principal component.

To see this, first enter the CORR module, USE the CRIME
file, compute a PEARSON correlation matrix, and SAVE the
result to a file called CRIMCORR.SYS.

Then enter EzPATH, and type the following commands.

USE CRIMCORR

NUMBER=50

METHOD=LS

OUTPUT=PC

MODEL

(F1) -1-> [MURDER]
-2->[RAPE]
-3->[ROBBERY]
~-4->[ASSAULT]
-5->[BURGLARY]
-6-> [ LARCENY]
-7=->[AUTOTHFT]
-8->[REGION]

ESTIMATE

You should obtain the following output.

MODEL

(F1)-1{ 0.578)->[MURDER]
~2{ 0.869)}->[RAPE]
=3{ 0.739}->[ROBBERY]
-4( 0.790}->[ASSAULT]
-5{ 0.875}->[BURGLARY]
-6{ 0.749}->[LARCENY]
=7{ 0.673}->[AUTOTHFT]
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-8{ 0.409}->[REGION]

You may quickly verify for yourself that the resulting model
coefficients are indeed the same values produced by the
FACTOR module.

Once loadings for the first principal component have been
determined, you may go on to extract a second. Simply edit
the output from the first run by removing the coefficient
numbers. This fixes the loadings for the first component as
fixed values equal to the loadings you obtained. Then add to
your model loadings for a second component. Your input will
look like this

MODEL

(F1)-{ 0.578}->[MURDER]
=-{ 0.869}->[RAPE]
={ 0.739)->[ROBBERY]
~{ 0.790}->[ASSAULT]
={ 0.875)~>[BURGLARY]
~{ 0.749)->[LARCENY)
={ 0.673)}->[AUTOTHFT]
-{ 0.409)~->[REGION]

(F2) -9-> [MURDER]
~10-> [RAPE]
-11->[ROBBERY]
-12-> [ASSAULT]
-13-> [ BURGLARY]
-14-> [LARCENY]
-15-> [AUTOTHFT]
-16-> [REGION]

At this point you might be asking, "Why can’t | extract the
two components simultaneously?" Well, in a sense you can,
except that the two components you obtain will, in general,
be an arbitrary rotation of the first two principal components,
rather than the first and second principal components
themselves.
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By extracting the components sequentially, we guarantee
that each, in turn, accounts for maximum variance.

D. Testing Pattern Hypotheses on Correlations

EzPATH can be used to test pattern hypotheses about the
structure of correlation matrices.

A pattern hypothesis on the elements of a correlation matrix
is any hypothesis that the correlations are equal to each
other, or to specified numerical values.

A number of interesting tests about correlational structure
can be phrases as pattern hypotheses on the poputation
correlation matrix. Steiger (1980) reviewed the literature on
these tests.

Steiger (1979) produced a computer program called
MULTICORR which tests pattern hypotheses on correlations
using the sample correlation matrix as input. Pattern
hypotheses tests on the population correlations can also be
performed using the sample covariance matrix as input,
using the following device. For each manifest variable, an
‘alias" latent variable is created which loads only on its
manifest variable, with a free parameter coefficient. The
variances of the latent variables are left unspecified, which
means they will be fixed at one.

Then desired constraints on the correlation matrix are
expressed as covariance constraints on the alias latent

variables.

This technique is formally equivalent to testing a hypothesis
of the form

2 =DPD

where D is a diagonal matrix of scaling constants, and P is a
correlation matrix. (See, e.g., Joreskog, 1978, p. 475.)
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This particular kind of covariance structure model has an
advantage, in that it is scale free. Any changes in scale in the
observed variables will not affect estimates of the elements
of P (although such changes will affect the estimates of the
elements of D). Consequently, the sample correlation matrix
may be analyzed instead of the sample covariance matrix,
and the chi—square statistic will still be correct. Point
estimates for the elements of P will also be correct.
Generally, the elements of D are not of interest in such
cases.

The following examples should make the general approach
clear.

1. Testing for Circumplex Structure

A perfect circumplex correlation matrix (Guttman, 1954)
has equal correlations on sub—diagonal strips. For
example, a 6x6 correlation matrix would be of the form

Po P4 1

P3 P2 Py 1

P2 P33 P2 P 1

Pq Po P3 Po Py 1

A data set used frequently to demonstrate a Guttman
circumplex is a correlation matrix among 6 different
kinds of abilities for 710 Chicago school children. This
matrix, from Guttman (1954), is in a file called
GUTTMAN.SYS on the distribution diskette.

Below is the set of commands for testing a hypothesis
of circumplex structure. The commands are in a file
called CIRCLE.CMD on the distribution diskette.

The first 6 model statements create 6 unit variance
"alias" latent variables corresponding to the 6 manifest
variables. These are, in effect, the manifest variables
rescaled to have unit variance. Hence hypotheses
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about the correlations among the manifest variables
can be tested as hypotheses about the covariances of
these alias latent variables. The remaining model
statements establish the constraints described above.

use guttman
nu=710
model

(F1)-1->[X1]
(F2)-2->[X2]
(F3)=3=>[X3]
(F4)-4->[X4]
(F5)~5->[X5]
(F6)-6->[X6]

(F1)~7-(F2)
-8-(F3)
-9-(F4)
-8-(F5)
-7-(F6)

(F2)-7-(F3)
-8~ (F4)
-9~ (F5)
-8-(F6)

(F3)=-7-(F4)
-8-(F5)
-9~ (F6)

(F4)-7-(F5)
-8-(F6)

(F5)-7-(F6)
ESTIMATE
By SUBMITting the file CIRCLE to EzPATH, you can

generate the following output from the maximum
likelihood estimation.
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Sample Size (N)
Degrees of Freedom
Chi-Square
Probability Level

Fit indices:

Point Estimates:

Population Noncentrality Parameter
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

LI ]

Confidence Intervals:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

[}

Calculations Completed.

Here are the results for the fitted model.

MODEL

(F1)-1{ 0.988}->[X1]
(F2)-2{ 0.991}->[X2]
(F3)-3{ 0.997}~>[X3]
(Fd)-4{ 1.009}->[X4]
(F5)-5{ 1.016}->[X5)
(F6)-6{ 1.000}->[X6]
(F1)-7{ 0.396}-(F2)
-8{ 0.295}-(F3)
-9{ 0.250}-(F4)
~8{ 0.295}-(F5)
-7{ 0.396}-(F6)
(F2)-7{ 0.396}-(F3)
-8{ 0.295}-(F4)
-9{ 0.250}-(F5)
-8{ 0.295}-(F6)

(F3)=7{ 0.396}~(F4)
-8{ 0.295}-(FS5)
-9( 0.250}-(F§)

(F4)-7{ 0.396}-(F5)
-8{ 0.295}-(F6)

(F5)=7{ 0.396}—(F6)

110

710

27.0515
.0076

.0225
.0433
.9926
.9870

.0053,
.0210,
.9841,
L9722,

.0485
.0636
.9982
.9969
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In your output in this case the covariances among the
alias latent variables will be the maximum likelihood
estimates of the population correlations under the null
hypothesis.

The sample size is very large in this example. Hence,
we would expect precision of estimate to be very high.
At the same time, we would have to keep in mind that
the "reject—support" approach of the chi—square test
would be of very limited usefulness in this situation. We
recognize that a model with this many constraints will
almost certainly not fit perfectly in the population, and
we have very high power to detect imperfect fit.

The chi—square statistic yields, in this case, a value of
27.05 with 12 degrees of freedom. The probability level
is .0076, indicating that the null hypothesis of perfect fit
must be rejected. Jéreskog (1978}, analyzing these
data, remarked that they "do not fit a circumplex well."

This conclusion seems, in the 20—20 vision of
hindsight, unjustified, and incorrect. The correct
conclusion is that it is highly probable that they do not
fit a circumplex perfectly. Goodness of fit indices
indicate how well these data actually do fit a
circumplex. The 90% confidence interval for the
Steiger—Lind (1980) RMS index is between .021 and
.063. (These numbers are in fact contained in the
Steiger—Lind 1980 handout.)

The corresponding confidence interval for the adjusted
population gamma coefficient is between .97 and .99.

A reasonable conclusion would seem to be that
Guttman’s data fit a circumplex very well, a fact which
we have verified statistically.

It is possible to generate the PATH1 commands for a
correlational pattern hypothesis quickly and efficiently
using the RMODEL command. This command creates a
file having the appropriate alias latent variables, and
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statements corresponding to all i i
ossible corre
among them. ° ftons

Try the foliowing example. Type

USE GUTTMAN
RMODEL DEMOCORR
FEDIT “DEMOCORR.CMD"

You will see the following:

* Note: Highest parameter number created
by EzZPATH is 21

(F1)-1->[X1]
(F2)-2->[X2]
(F3)=-3->[X3]
(P4)-4->[X4]
(F5)-5->[X5]
(F6)-6->[X6]

(F2)-7{ 0.446)}-(F1)
(F3)-8{ 0.321}-(F1)
-9{ 0.388}~(F2)
(F4)-10{ 0.213}~(F1)
-11{( 0.313}-(F2)
-12( 0.396)~(F3)
(F5)-13{ 0.234}-(F1)
-14{ 0.208}-(F2)
-15( 0.325}=-(F3)
-16{ 0.352)}-(F4)
(F6)-17( 0.442)}-(F1)
-18{( 0.330)-(F2)
-19{ 0.328}-(F3)
-20{( 0.247)-(F4)
-21{( 0.347)-(F5)

It.takes only a few seconds to modify this file to reflect
mrcumplex structure, save it, highlight it, and perform
the statistical test described above.
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2. Testing for Stability of a Correlation Matrix over Time

Suppose you measured a set of variables twice, and
wished to test the hypothesis that the correlation
coefficient had not changed from time 1 to time 2. For
example, suppose 120 individuals are measured twice
on verbal, quantitative, and analytical ability. In this
case, the covariance matrix would be 6x6.

This hypothesis can be tested easily as a correlational
pattern hypothesis (see Steiger, 1980). The key to
setting up this problem is to conceptualize the 3
variables measured at 2 times as 6 variables measured
on a single group of subjects.

Suppose that the correlation matrix (contained in & file
called TWOCORR.SYS on the distribution diskette) for
the 6 variables is as follows:

VERBAL_1 1.00

QUANT 1 0.65 1.00

ANALY_1 0.54 0.68 1.00

VERBAL_2 0.27 0.30 0.21 1.00

QUANT_2 0.32 0.21 0.27 0.59 1.00
ANALY 2 0.18 0.26 0.22 0.48 0.55 1.00

Suppose further that the sample standard deviations
for the variables are:

VERBAL_1 2.1
QuanT 1 3.0
ANALY 1 2.4
VERBAL_2 1.6
QUANT 2 3.3
ANALY_2 2.2

Then the sample covariance matrix for the data
(contained in a file called TWOCOV.SYS on the

distribution diskette) is:
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-4100

0000

7600

8064 2.5600

1384 3.1152 10.8900

-1616 1.6896 3.9930 4.8400

- N o Ww oY a

The hypothesis for stability of correlations is tested with
the following model statements:

MODEL
* FIRST CREATE ALIAS LATENT VARIABLES

(F1)-1-> [VERBAL 1]
(F2)-2->[QUANT 1]
(F3)-3->[ANALY_1]
(F4)-4->[VERBAL_2]
(F5)-5->[QUANT 2]
(F6)-6->[ANALY 2]

* THEN SET UP CORRELATIONS FOR TIME 1

(F1)-7-(F2)
(F1)-8-(F3)
(F2)-9-(F3)

* MAKE THE CORRELATIONS FOR TIME 2 EQUAL

(F4)-7-(F5)
(F4)-8-(F6)
(F5)-9-(F6)

* DON’T FORGET TO INCLUDE THE CROSS-
CORRELATIONS!

(F1)-10-(F4)
=11-(F5)
-12-(F6)

(F2)-13-(F4)
-14-(F5)
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-15-(F6)
(F3)-16-(F4)
=17~ (F5)
-18-(F6)

* END OF MODEL
NUMBER=120
SE=YES
PRINT=LONG
ESTIMATE

The estimated correlations among the alias latent
variables are maximum likelihood estimates of the
correlations among the manifest variables, under the
null hypothesis.

As | mentioned above, it will make no difference in the
hypothesis test, or if you test the hypothesis on the
sample correlation or covariance matrix. The chi—
square statistic will be identical. However, estimates for
the scaling factors (coefficients 1 through 6 in the
above model) will change.

You can verify these facts for yourself by running
TWOCORR.CMD on both the covariance
(TWOCOV.SYS) and correlation (TWOCORR.SYS)
matrices.

| should add a note of caution here. The tests
performed by EzPATH on correlation matrices are valid
asymptotic statistics. However, the evidence suggests
that (especially at smaller sample sizes) tests especially
designed for correlational hypotheses (Steiger 1980a,
1980b; Steiger & Browne, 1984; Steiger & Hakstian,
1982; Wilson & Martin, 1983), which use the Fisher
transform, will generally be more accurate and more
powerful than tests performed with EzPATH.

E. Pattern Hypothesis Tests on a Covariance Matrix
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Besides allowing tests on pattern hypotheses on
correlations, EzPATH also allows similar tests on the

covariance matrix. This is complicated slightly by the fact that
EzPATH currently requires all manifest variables to appear in

at least one path.

Consequently, since all manifest variables are exogenous,
and some variances or covariances are specified, we cannot

use the AUTOFIX command, and must in fact specify

variance and covariance relationships for all manifest

variables. The CMODEL command will simplify this by
creating a PATH1 specification corresponding to a

completely covariance matrix. You can then apply whatever
constraints you wish to this matrix using the FEDIT file editor.

1. Test for Equality of Dependent Variances

As a simple example, consider some data gathered by

William E. Coffman, and reported by Lord (1963).
These data represent performance on the Stanford
Achievement Test for 95 students measured in the

seventh and eighth grades. The covariance matrix for
the data is in a file called VAR2.SYS on the distribution
disk. Suppose you wished to test the hypothesis that
the population variance had not changed from seventh
to eighth grade. The PATH1 specification for such a
hypothesis (contained in the file VAR2.CMD on the
distribution diskette) is as follows:

MODEL
[X1]-1~[X1]
[X2]-1-[X2]
[X1]-2-[X2]

By submitting the command file, you can obtain the
following output for the hypothesis test:

Sample Size (N)
Degrees of Freedom
Chi-Square
Probability Level

95

1
15.4174
.0001

[l
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Noncentrality Based Fit indices:

Point Estimates:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Confidence Intervals:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Additional Single Sample Indices:

Joreskog-Sorbom GFI
Joreskog-Sorbom AGFI
Rescaled Akaike Criterion
Rescaled Schwarz Criterion

Browne-Cudeck Cross-Validation Index

Calculations Completed.

Here are the results for the fitted model.

MODEL

[X1]-1{ 168.100}-[X1]
[X2]-1( 168.100}-[X2]
[X1]-2{ 144.295)}-{X2}

[l [t

-1513
.3889
.B686
.6058

.0481,
.2193,
L7622,
.2865,

.B686
.6058
.2066
.2609
.2080

-3120
.5586
-9541
.8624

The chi—square statistic indicates that the hypothesis
of equal variances can be rejected, as the probability

level is only about .0001.

A test for "compound symmetry" of the covariance
matrix is sometimes performed in the context of

2. Test for Compound Symmetry

repeated measures analysis of variance (See, e.g.,
Winer, 1971, p. 596—598). This hypothesis states that
the covariance matrix equal diagonal elements, and

equal off-diagonal elements. The file WINER.SYS
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contains the pooled covariance matrix analyzed by
Winer. Because the matrix was obtained by pooling
two samples of size 5, it would have the same
distribution (assuming both populations have the same
covariance matrix) as a covariance matrix based on a
single sample of size 9. Hence, we use NUMBER=9
below. We test that the covariance matrix has the form

022 pgz 002
po? 0%  po?
p02  po2 2

Let’s use this example to illustrate the use of the
CMODEL command. Make sure the WINER.SYS file is in
your SYSTAT directory.

Then type

USE WINER
CMODEL SYMCOV

This will create the following PATH1 commands in a file
called SYMCOV.CMD.

MODEL

* Note: Highest parameter number created
by EzPATH is 6

[X1]-2{ 3.100}-[X1]

[X2]-2¢
—3(

[X3]-4¢
-5¢
-6{

Type

118

1.920)~[X1]
2.800)-[X2]

1.820}-[X1]
2.000}~[X2]
3.800}-[X3]

FEDIT '"'SYMCOV.CMD"
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and edit the file so that the covariance matrix has equal
diagonal elements, and equal off—diagonal elements.

As usual, wires from a variable to itself represent
variances, and wires between different variables
represent covariances. Variances are thus located at
the bottom of each group of commands. Change all
the variances first so that they all have coefficient
number 1. Then change the covariances so that they all
have coefficient number 2. There is no need to change
the starting values so that they are the same for
equivalent paramters. EzPATH simply uses the last
value for each parameter. (I suggest removing the
comment line from the file as well. It is no longer
relevant.)

The file should look like this when you are done:
MODEL
[X1]=-1{ 3.100}-[X1]

[X2]-2{ 1.920}~[X1]
-1{ 2.800}-[X2]

[X3]-2{ 1.820}-[X1]
-2{ 2.000}-[X2]
-1{ 3.800}-[X3]

Hit the <F10> key and save the file. Then type the
following commands

NUMBER=9
FORMAT=2
OUTPUT SYMCOV
SUBMIT SYMCOV
ESTIMATE

You will get the following output:
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Sample Size (N)
Degrees of Freedom
Chi-Square
Probability Level

Noncentrality Based Fit indices:

Point Estimates:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Confidence Intervals:

nonowou

-

6944
.9520

.0000
.0000
.0000
.0000

4 degrees of freedom, is only .694. This is not
significant. In fact, the probability level is suspiciously
high, as is sometimes seen with artificial data in ANOVA
textbooks! This fact, coupled with the high values for
the fit coefficients, suggests that the population matrix
deviates only trivially from the hypothesized structure.

F. Test Theory Models for Sets of Congeneric Tests

A variety of interesting test theory models can be tested and
estimated using EzPATH. These models are all special cases
of the common factor model, and are discussed in Jéreskog
{1974) on pages 49—56. The classical test theory model can

Population Noncentrality Index = .0000, .0000

Steiger-Lind Adjusted RMS Index = -0000, -0000 be expressed as a common factor model. Suppose a group
Population Gamma Index = 1.0000, 1.0000 . .

Adjusted Population Gamma Index = 1.0000, 1.0000 of tests are congeneric, i.e., have the same true scores

Additional Single Sample Indices:

Joreskog-Sorbom GFI

Joreskog-Sorbom AGFI

Rescaled Akaike Criterion

Rescaled Schwarz Criterion
Browne-Cudeck Cross-Validation Index

Calculations Completed.
Here are the results for the fitted model.
HOPEL

[X1}-1{ 3.23}-[X1}

[X2]-2{ 1.91}-(X1]

-1q

w

.23)-[%2)

[X33-2{ 1.91}-([X1)

-

24
-1

.91}-[X2}
.23)}-[X3]

w

[ TRl

-

-9457
.9185
-5868
.6361
-0868

underlying them. Then if the observed score is equal to the
true score plus error, and error is uncorrelated with true
scores, we have the path model shown in Figure 13a for two
sets of two congeneric tests.

We restrict the output to two significant digits for
comparability with the data in Winer (1971). Note that

the maximum likelihood estimates under the null .M ?
hypothesis correspond to the matrix Sy on page 598 of ;
the Winer text. We find that the chi square statistic, with
12 .
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It is possible to test the assumptions underlying Lord’s
(1957) test directly, i.e., we can test the hypothesis that the

Figure 13a. A Model for Two Sets of Congeneric Tests. elements of each pair of tests are parallel (i.e., have equal

variance and equal reliability) without testing the hypothesis
Suppose you wished to assess whether two different tests that the disattenuated correlation coefficient is unity. This
measure the same trait. In classical test theory, we would say hypothesis is shown in Figure 13c.

that the tests measure the same trait if their true scores are
perfectly correlated, i.e., if the correlation coefficient between
the tests, corrected for attenuation, is unity. Jéreskog (1 978)
refers to such tests as tau—equivalent.

Lord (1957) proposed a test for tau—equivalence. His test
required the assumption that the elements of each pair of
tests have equal variance and equal reliability, i.e., that the
tests are parallel. The model corresponding to the
hypothesis tested by Lord’s method, i.e. that the tests are
both parallel and tau—equivalent, is illustrated in Figure 13b.

(@l

TAUX
3 , \
f2 X2
\\
1.0
Figure 13c. A Model for Two Sets of Parallel Congeneric Tests.
£3 4 Yl
b Models B and C form a nested sequence, since B is a
TAUY special case of C. If we compute the chi—square statistics
4 for Models B and C, and take their difference, we obtain a
fe chi—square difference statistic with one degree of freedom
for testing the hypothesis that the disattenuated correlation
is 1.
Figure 13b. A Model for Two Sets of Parallel, Tau—equivalent, Lord’s test is valid provided its assumptions are met.
Congeneric Tests. However, EzPATH allows us to test whether the

disattenuated correlation coefficient is unity without requiring
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the restrictions of Lord’s test. Figure 13d illustrates a
hypothesis that the tests are congeneric (but not necessarily
parallel) and tau—equivalent.

The covariance matrix for this example is in the file
LORD.SYS on the distribution diskette. The PATH1
statements for the 4 models are contained in the file
LORD.CMD on the distribution disk. The following output
(edited in the interest of brevity) can be obtained by
SUBMITting the LORD command file.

- 1 RESULTS FOR HYPOTHESIS 4, FIGURE A
Sample Size (N) = 649
TAUX Degrees of Freedom = 1
Chi-Square = 7030
Noncentrality Based Fit indices:
1. O Point Estimates:
Population Noncentrality Index = .0000
Steiger-Lind Adjusted RMS Index = .0000
8 Population Gamma Index = 1.0000
E3 Y1 \&\\ 3 Adjusted Population Gamma Index = 1.0000
W TAUY Confidence Intervalse:
E4 Y2 Population Noncentrality Index = .0000, -0095
Steiger-Lind Adjusted RMS Index = .0000, .0974
Population Gamma Index = -9953, 1.0000
Adjusted Population Gamma Index = .9528, 1.0000
Additional Single Sample Indices:
Figure 13d. A Model for Two Sets of Tau—equivalent Congeneric
Tests. Joreskog~Sorbom GFI = .9995
Joreskog-Sorbom AGFI = .9946
Rescaled Akaike Criterion = .0289
Rescaled Schwarz Criterion = .0910
Browne-Cudeck Cross-Validation Index = .0291

Model D is a special case of model A, i.e., the two models
form a nested sequence. Consequently, subtracting the
chi—square statistics for model A from that obtained for
model D will produce a chi—square statistic with one degree
of freedom. This provides an alternative test that the Here are the results for the fitted model.
disattenuated correlation is one.

Calculations Completed.

Jéreskog tested models A,B,C, and D on some data given in (Zigi?_u 7.501 SE= 0.323}->(X1]
Lord’s (1957) paper. The results of the testing are 24 7.703 8BS 0.3203->(X2)
summarized both in Jéreskog (1974) and in Jéreskog (TAUY)-3{ 8.509 SE= 0.327}->[Y1]
(1978) -4{ 8.675 SE= 0.325}->[Y2]

(TAUX)-5{ 0.899 SE= 0.019}-(TAUY)

(E1)-6{ 5.490 SE= 0.225}->[X1]
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1 &
(E2)-7{ 5.189 SE= 0.234}->[X2]
(E3)-8{ 4.988 SE= 0.236}->[Y1) (E2)-3{ 5.890 SE= 0.140}->[X2}
(E4)-9{ 4.750 SE= 0.247}->[Y2] (E3)-4{ 5.127 SE= 0.136}->[¥1]
(E4)-4{ 5.127 SE= 0.136}->[Y2]
Terminating processing for this model.
Terminating processing for this model.
RESULTS FOR HYPOTHESIS 2, FIGURE C
RESULTS FOR HYPOTHESIS 1, FIGURE B
Sample Size (N) = 649
Degrees of Freedom = 5
Sample Size (N) = 649 Chi-Square = 1.9335
Degrees of Freedom = 6 Probability Level = .B583
Chi-Square = 37.3337
Probability Level = .0000
Noncentrality Based Fit indices:
Noncentrality Based Fit indices:
Point Estimates:
Point Estimates: Population Noncentrality Index = .0000
Steiger-Lind Adjusted RMS Index = .0000
Population Noncentrality Index = .0529 Population Gamma Index = 1.0000
Steiger-Lind Adjusted RMS Index = .0939 Adjusted Population Gamma Index = 1.0000
Population Gamma Index = .9742
Adjusted Population Gamma Index = -9571
Confidence Intervals:
Confidence Intervals:
Population Noncentrality Index = .0000, .0044
Steiger-Lind Adjusted RMS Index = .0000, .029¢
Population Noncentrality Index = L0264, .0880 Population Gamma Index = .9978, 1.0000
Steiger-Lind Adjusted RMS Index = L0664, L1211 Adjusted Population Gamma Index = .9956, 1.0000
Population Gamma Index = .9578, .9870
Adjusted Population Gamma Index = <9297, .9783
Additional Single Sample Indices:
Additicnal Single Sample Indices:
Joreskog-Sorbom GFI = .9985
Joreskog-Sorbom AGFI = .9970
Joreskog~Sorbom GFI = .9705 Rescaled Akaike Criterion = .0184
Joreskog-Sorbom AGFI = .9509 Rescaled Schwarz Criterion = .0529
Rescaled Akaike Criterion = .0700 Browne-Cudeck Cross-Validation Index = .0185
Rescaled Schwarz Criterion = -0976
Browne-Cudeck Cross-Validation Index = .0701
Calculations Completed.
Calculations Completed.
Here are the results for the fitted model.
Here are the results for the fitted model.
MODEL
(TAUX)-1{ 7.601 SE= 0.268}->[X1]
MODEL -i{ 7.601 SE= 0.268}->[X2)
(TAUX)-1{ 7.186 SE= 0.266}->[X1]
-1{ 7.186 SE= 0.266}->[X2] (TAUY)-2{ 8.592 SE= 0.279}->[Y1]
-2{ 8.592 SE= 0.279}->[Y2]
(TAUY)-2{ 8.442 SE= 0.280}->(Y1]
~2{ 8.442 SE= 0.280}->[Y2] (TAUX)-5{ 0.899 SE= 0.019}-(TAUY)
(TAUX)-{1.0}-(TAUY) (E1)-3{ 5.344 SE= 0.148}->{X1)]
(E2)-3{ 5.344 SE= 0.148}->[X2)
(E1)-3{ 5.890 SE= 0.140}->[X1] (E3)-4{ 4.872 SE= 0.135}->[Y1]
(E4)-4{ 4.872 SE= 0.135}->[Y2]
1
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Terminating processing for this model.

Sample Size (N)
Degrees of Freedom
Chi-Square
Probability Level

Noncentrality Based Fit indices:

Point Estimates:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Confidence Intervals:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Additional Single Sample Indices:

Joreskog-Sorbom GFI
Joreskog-Sorbom AGFI
Rescaled Akaike Criterion
Rescaled Schwarz Criterion

Browne-Cudeck Cross-Validation Index

Calculations Completed.

Here are the results for the fitted model.

MODEL
(TAUX)-1{ 7.104 SE= 0.322}->[X1)
-2{ 7.269 SE= 0.318)}->[X2)

©

(TAUY)-3{ 8.374 SE= 0.325}->[¥1]
-4{ 8.511 SE= 0.324}->[Y2]
(TAUX)-{1.0}- (TAUY)
(E1)-6{ 5.994 SE= 0.201}->[X1]
(E2)-7{ 5.782 SE= 0.200}->[X2]
(E3)-8{ 5.212 SE= 0.215}->[Y1]
(E4)-9{ 5.038 SE= 0.219}->[Y2]
128

nmo owon

[ |

wononono

649

2
36.2095
.0000

.0573
-1693
.9722
.8608

.9714
.8571
.0806
.1358
.0808

.0926
.2152
.9850
.9252

© 1989, SYSTAT, Inc.

Both chi—square difference tests yield the same conclusion:
the hypothesis that the disattenuated correlation coefficient
is 1 can be resoundingly rejected. For example, the chi—
square difference statistic (with one degree of freedom) for
Mode! A versus Model D is 35.51. On the other hand, the
maximum likelihood estimate for the disattenuated
correlation is quite high (.899). Moreover, the standard error
for this value is only .019.

G. Multitrait—Multimethod Factor Models

When personality traits or characteristics are measured,
variation among people can occur for several reasons. Two
obvious contributing factors are variation in the traits
themselves, and variations in the way people react to a
particular method.

When a trait is measured by only one method, there is a
possibility that the variation observed is actually method
variance, rather than trait variance. For example, if a
particular questionnaire does not control for acquiescence
response set, variation among people due to a problem in
the method is confounded with actual trait variation.

One way around this problem is to try to measure both trait
and method variation in the same experiment. The
multitrait—multimethod correlation matrix contains
correlations between t traits or characteristics each
measured by the same m methods. Campbell and Fiske
(1959) suggested that the multitrait—multimethod correlation
matrix should be examined to provide evidence of construct
validity.

In their original work, Campbell and Fiske suggested that
two kinds of validity, which they termed convergent validity
and discriminant validity, could be evaluated by examining
this matrix. There are 4 kinds of correlations in the matrix;
(1) same—trait, same—method; (2) same—trait, different—
method; (3) different—trait, same—method, (4) different—
trait, different—method. Convergent validity is demonstrated
if same —trait, different method correlations are large.
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Discriminant validity is evidenced if same—trait different—
method correlations are substantially higher than different—
trait, different—method correlations.

Kenny (1979) analyzed data from Jaccard, Weber, and
Lundmark (1975). Their study measured attitude toward
cigarette smoking (C) and attitude toward capital
punishment (P) with 4 different methods. The methods were:
(1) semantic differential, (2) Likert, (3} Thurstone, (4)
Guilford. The correlation matrix, based on only 35
observations, is in a file called JACCARD.SYS on the
distribution diskette.

Kenny used a classic test theory approach to analyzing the
data:

The traits are factors whereas the disturbances
or unique factors are allowed to be correlated
across measures using the same method. Such
a model is identified if there are at least two
traits and three methods. Assuming the model
fits the data, then convergent validation is
assessed by high loadings on the trait factors,
discriminant validation by low to moderate
correlations between the trait factors, and
method variance by highly correlated
disturbances.

The EzPATH diagram for the resulting model is shown in
Figure 14.

The PATH1 specification for the model is in a file called
JACCARD.CMD on the distribution diskette. Running this
model (which is in a file called JACCARD.CMD on the

distribution diskette) on the data produces the outputshown
below:
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Figure 14. A multitrait—multimethod model.

Sample Size (N)

Degrees of Freedom
Chi-Square
Probability Level

Noncentrality Based Fit indices:

Point Estimates:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index
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[ ]

35

15
10.3540
.7969

.0000
.0000
1.0000
1.0000
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Confidence Intervals:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index

Population Gamma Index

Adjusted Population Gamma Index

Additional Single Sample Indices:

Joreskog-Sorbom GFI

Joreskog-Sorbom AGFI

Rescaled Akaike Criterion
Rescaled Schwarz Criterion

Browne-Cudeck Cross-Validation Index

Calculations Completed.

Here are the results for the fitted model.

MODEL
(€C)=1{
-24

44
(P}-5{

-74
-8¢

(E1)-13{
(E2)-14{
(E3)-15{
(Ed)-16{

(ES)~17(
(E6)-18¢
(E7)-19¢
(EB)-20¢

0
0
-3{ 0.
0

0
-6{ 0.
0
[}

.893
.853
314
.860

-867
957
.916
.964

. 449
-532
. 400
-506

.477
.263
. 409
.329

SE= 0
SE= 0
SE= 0.
SE= 0
SE= 0
SE= 0.
SE= 0
SE= 0

SE=
SE=
SE=
SE=

.133}->{C1)
.137}->[C2)

1303->[C3}

.135}->[c4)

.132}->[P1)

123}->[P2]

o000

[¢]
[¢]
]
[¢]

.130}->(P3]
.128)->[P4]

.075}->[C1]
.078)}->[(C2]
.077}->(C3]
.076}->[C4]

.064}->([P1)
.059}->[P2]
.059}->[(P3)
.057}->(P4]

(E1)-9{ 0.183 SE= 0.201}-(85)
(E2)-10{ 0.293 SE= 0.229}-(E6)
(E3)-11{ 0.208 SE= 0.218}-(E7)
(E4)-12{ 0.270 SE= 0.206}-(E8)

(P)-21{ 0.248 SE= 0.167}-(C)

[ 'l

0000,
.0000,
.9598,
.903s,

.9297
.8313
1.5398
2.5005
1.9845

L1674
.1056
.0000
.0000

o

Kenny remarked that the data fit the model well in this case.
With statistically —based fit indices, and the 20—20 vision of
hindsight, we can see that the issue is very much in doubt.
The sample size is so small that the confidence intervals for
the statistically —based fit indices are quite wide. For
example, the 90% confidence interval for the Steiger—Lind
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RMS index ranges from 0 to .1056. In practice, we would
prefer a significantly larger sample size.

H. Longitudinal Factor Analysis Models

Corballis and Traub (1970) presented a longitudinal factor
analysis model, which stipulates that factorial structure
underlying a set of tests remains constant over two or more
administrations of the tests. An example of such a model is
given by Everitt (1984, pages 52—55). The data were from a
study by Meyer and Bendig (1961), who administered the 5
Thurstone Primary Mental Abilities tests to 49 boys and 61
girls in grades 8 and 114. The tests are Verbal Meaning (V),
Space (S), Reasoning (R), Numerical (N), and word fluency
(W). The correlation matrix for these data are in a file called
MEYER.SYS on the distribution diskette.

The model analyzed by Everitt (1984) stipulates a single
common factor underlying the scores on both occasions.

The EzPATH diagram for the model is in Figure 15.

The PATHI1 translation of the diagram is contained in a file
called MEYER.CMD on the distribution diskette.
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Sample Size (N)
Degrees of Freedom
Chi-Square
Probability Level
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Here is some of the output.

Noncentrality Based Fit indices:

Point Estimates:

110

51.4562
.0063

11

Figure 15. A Longitudinal Factor Analysis Model.
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Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Confidence Intervals:

Population Noncentrality Index
Steiger-Lind Adjusted RMS Index
Population Gamma Index

Adjusted Population Gamma Index

Additional Single Sample Indices:

Joreskog-Sorbom GFI
Joreskog-Sorbom AGFI
Rescaled Akaike Criterion
Rescaled Schwarz Criterion

Browne-Cudeck Cross-Validation Index

Calculations

Here are the

MODEL

(F1)-1{ ©.
-2 0.

Completed.

768 SE= 0.096}->[V1)
406 SE= 0.101}->[S1]
-3{ 0.575 SE= 0.097}->[R1]
-4{ 0.696 SE= 0.096}->[N1]
-5{ 0.397 SE= 0.102}->[W1)

(F2)-6{ 0.839 SE= 0.092}->[V2]
~7{ 0.314 SE= 0.103}->[S2]
-8{ 0.606 SE= 0,095)->[R2]
-9{ 0.659 SE= 0.096)}->[N2]

-10{ 0.292 SE= 0.103}->[W2]

(F1)-11{ 0.953 SE= 0.027}-(F2)

(E11)-12(
(E21)-13{
(E31)-14{
(E41)-15{
(E51)-16(

(E12)-17{
(E22)-18(
(E32)-19{
(E42)-20(
(E52)-21¢

(E11)-22¢
(E21)-23(
(E31)-24{
(E41)-25{(

0.635
0.917
0.810
0.734
¢.918

0.546
0.951
0.785
0.756
0.957

0.557
0.614
0.619
0.573
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SE= 0
SE= 0
SE= 0.
SE= 0
SE= 0
SE= 0.
SE= 0.
SE= 0.
SE= 0.
SE= 0.
SE= 0.
SE= 0.
SE= 0.
SE= 0.

L077}->[V1]
.065}->[s1}

063})~->[R1]

L067}->(N1]
L065)->[W1)

088)->[V2)
066}->(S2]
063}->[R2)
065)->[N2]
066}->(W2]

118}-(E12)
061}-(E22)
066)-(E32)
078}-(E42)

results for the fitted model.

.1671
-075%
.9677
.9387

L0261,
.0300,
.9310,
.8692,

.9211
.8504
.9491
1.5933
1.0027

.3704
.1130
.9948
.9902
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(E51)-26{ 0.366 SE= 0.085}-(E52)
RPASP IETAL
1

14
The chi—square value of 51.46 allows us to reject the null 10 1. ROASP
hypothesis of perfect fit. On the other hand, the RIQ 2 ETM/
noncentrality —based fit indices indicate that the jury is, in a 3 15
sense, still out regarding whether the fit of this model is REASP
acceptable. Consider, for example, the Steiger—Lind RMS TS 5
index. The point estimate is .076, but the confidence interval
ranges from .03 to .11. Basically, this indicates that the 9 9
sample size of 110 is insufficient to determine, with adequate
precision, the quality of the population fit. F3ES 4
6 13 pasp | O—{ wsiLom
|. Effect of Peer Influences on Ambition o
FIQ ETA2 1.0
Duncan, Haller, and Portes (1968) analyzed the effect of 8 17
. . . . i 11 FOASP EPSILON4
peer influences on ambition. The correlation matrix from their
study, based on 329 subjects, is contained in the file FPASP @

DHP.SYS on the distribution diskette. Their data have been
analyzed in a number of publications, and | will not discuss
the substantive content of the example here. Jéreskog and .
Sorbom (1984) present the results from several path models Figure 16. A Model for the Effects of Peer Influence on Aspiration.
on these data. Here we analyze the model the results for
which are given in Table H11.12 of Jéreskog and Sérbom. The . .
EzPATH diagram is shown below in Figure 16. PATH1 The output below gives both the unscaled and standardized
statements corresponding to the diagram are in a file called maximum likelihood solutions.

DHPA.CMD on the distribution diskette.

sample Size (N) 329
p

If you study these commands, you will notice that the Degrees of Preedom = 17
AUTOFIX command is used with this model. The command Propanility Level T oese
is used because of the existence in the model of a number of ’

manifest exogenous variables (located on the left hand side Noncentrality Based Fit indices:

of the diagram). We have taken the convenient option here

and not specified any of the variance—covariance Point Estimates:

relationships for these variables. If you give the Population Noncentrality Index = .0295
AUTOFIX=YES command, EzPATH will handle these Dy O “oo41
relationships automatically. If you fail to include the Adjusted Population Gamma Index = -9810

command, EzPATH will give an error message and abort the
analysis, unless you add paths for all of the variance—
covariance relationships among these variables. Population Noncentrality Index

Steiger-Lind Adjusted RMS Index
Population Gamma Index

Confidence Intervals:

L0000, .0826
.0000, L0697
.9838, 1.0000
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Adjusted Population Gamma Index = .9474, 1.0000
Additional Single Sample Indices:

Joreskog-Sorbom GFI -9843
Joreskog-Sorbom AGFI = .9492
Rescaled Akaike Criterion = .3137
Rescaled Schwarz Criterion = -7535
Browne-Cudeck Cross-Validation Index = .3218
Calculations Completed.

Here are the results for the fitted model.

MODEL

* Duncan Haller Portes -- Original Model in Lisrel IV Manual

(RPASP]-1{ 0.164 SE=

[RIQ)-2{ 0.254 SE= 0.

0.039}->(ETA1)
042)->(ETAL)

[RSES]-3{ 0.221 SE= 0.042}->(ETAl)

-4{ 0.068 SE=

0.039}->(ETA2)

[FSES]-5{ 0.077 SE= 0.041}->(ETAl)

-6{ 0.218 SE=

[FIQ]-7{ 0.331 SE= 0.

[FPASP}-8{ 0.152 SE=

0.039}->(ETA2)
041}->(ETA2)
0.036}~>(ETA2)

(ETA1)-9{ 0.180 SE= 0.039}->(ETA2)
(ETA2)-9{ 0.180 SE= 0.039}->(ETAl)

(ZETA1)-10{ 0.530 SE= 0.044}->(ETAl)
(ZETA2)-11{ 0.479 SE= 0.041}->(ETA2)

(ETA1)-12{ 1.061 SE=
-->[ROASP]

(ETA2)-->[FOASP]
-13{ 1.074 SE=

(EPSILON1)-14{ 0.581
(EPSILON2)-15{ 0.642
(EPSILON3)-16{ 0.560
(EPSILON4)-17{ 0.635

Here are the results

* Duncan Haller Portes -~

0.089}~>[REASP]

0.081}->[FEASP]

SE= 0.044}->[REASP)
SE= 0.040}~>[ROASP]
SE= 0.041}->[FEASP]
SE= 0.036}->[FOASP]

for the Standardized Solution.

[RPASP]-1{ 0.214}->(ETAl)
[RIQ}-2{ 0.331}->(ETAl)
{RSES]-3{ 0.288}->(ETAl)
-4{ 0.089}->(ETA2)
[FSES]-5{ 0.101)}->(ETAl)
-6{ 0.283}->(ETAZ)
[FIQ]-7{ 0.429}->(ETA2)
[FPASP]-8{ 0.197}->(ETA2)

(ETA1)-9{ 0.179}->(ETA2)
(ETA2)-9{ 0.181}->(ETAl)

(ZETA1)~10{ 0.692}->(ETAl)
(ZETA2)-11{ 0.621}->(ETA2)

(ETA1)-12{ 0.813}->[REASP)

Original Model in Lisrel IV Manual
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—{ 0.767}->[ROASP]
(ETA2)~{ 0.771}->[FOASP]
-13{ 0.828}->[FEASP]

(EPSILON1)-14{ 0.581}->[REASP]
(EPSILON2)~15{ 0.642)~>[ROASP]
(EPSILON3)-16{ 0.560}->[FEASP]
(EPSILON4)-17{ 0.635}->[FOASP)
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10. Hints on Using EzPATH.

A. Generating a Covariance Matrix for Your Own Model.

EzPATH allows you to SAVE an estimated variance
covariance matrix in a SYSTAT file. This facility makes it
possible to generate the covariance matrix corresponding to
a model you have specified. Having the ability to do this can
be quite useful. For example, if you are teaching a causal
modeling course, you could create a model with your own
desired coefficients as “starting values," then generate the
covariance matrix corresponding to the model, and see if
your students can deduce, from substantive and/or
statistical considerations, what the "true" model was.

Another, less obvious use for this technique occurs when
you want to try an alternative model to one in a published
source, but the published source doesn’t include the
covariance matrix. Sometimes, in such cases, you can
approximate the covariance matrix using the published
model coefficients.

To use this facility, follow these steps:

1. Use the SYSTAT data editor to create a "dummy"
covariance matrix. The matrix need contain no data.
Just power up the editor, enter the correct manifest
variable names, and then save the file.

2. Create you model file as a .CMD file, with your
desired coefficients as starting values.

3. Power up EzPATH. Be sure you have set
ITERATIONS=0, METHOD=LS, PRINT=LONG. Then
issue a SAVE <File Name> command to save the
output matrix to a file called <File Name> HAT.

© 1989, SYSTAT, Inc.

4. ESTIMATE your model. The estimated variance
covariance matrix printed by the program will be saved
as a SYSTAT binary file. You can then analyse it like
any other covariance matrix, except you will know the
mode! which fits it perfectiy!

B. Avoiding System Crashes and Data Loss

Everyone, at one time or another, gets to see the infamous
SYSTAT “Input Output Error* message, following which you
are unceremoniously beeped back to the operating system.
As irritating as this development may be, it actually occurs to
protect you from potential major data loss. The problem is,
when certain input—output errors occur, DOS can go crazy
and start trashing your hard disk. SYSTAT software
engineers decided that most users would rather risk losing a
little work than megabytes worth.

First, remember the following. EzPATH uses lots of files, and
generates lots of output. If you run out of space on the
diskette while a write operation is taking place, you will
probably crash the system. To minimize the chances of this
happening, try not to run the program from a floppy disk,
unless it is 1.44M or 1.2M. You're just asking for trouble
unless you start with plenty of free space on your directory.

Second, use the oUTPUT command liberally. SAVE your
command log periodically as well. Simply type FEDIT >,
and enter a single blank at the end of the command log.

. Then hit F10 and save the file (I routinely use the filename

"SESSION" for my command log). Do this periodically! These
two precautionary measures will mean that you will
practically never lose any important work.

If the system does crash, (which will seldom happen), check
for the screen buffer and command files, SYSTAT$.LOG and
SCREEN$.BUF. They may be there, with much of your
session intact.

Most system crashes with EzPATH will be avoidable input—
output problems. Occasionally, it is possible an internal math
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error will occur, usually due to arithmetic overflow or
underflow. There is extensive error trapping in EzPATH to try
to prevent this from happening. | believe you will encounter
far fewer "MATH ERROR" system crashes from EzPATH then
from most complex programs of its type. Let me know if you
have a math error crash and can replicate it. If you send me
your input, I'll try to correct the problem.

C. Plotting Normalized Residuals.

If you issue a BAVE command in conjunction with
PRINT=LONG, EzPATH saves normalized residuals into a file
with the extension .RES. The variable RESIDUAL in this file
will be the normalized residual values. You can do a PPLOT
with GRAPH or SYGRAPH modules to examine these
residuals.

D. When Your Output Doesn’t Agree with That Other
Program’s.

There are several ways to estimate the same causal model.
Sometimes this can make it seem like two different programs
have obtained different results for the same model. For
example, LISREL routinely estimates variances for
exogenous latent variables in such matrices as "THETA
DELTA." If you use the default approach in EzPATH, there
will be no "THETA DELTA." You will not be estimating
exogenous latent variable variances, because they will by
default be fixed at one. Rather, you will be estimating path
coefficients from the latent variables to some other variable.
These coefficients are usually fixed at one by LISREL. The
advantage of the default EzPATH approach is that, in effect,
latent variable variances cannot "go negative” during
iteration. Another advantage is that it requires fewer explicit
paths.

Of course, by adding explicit pathways for exogenous latent

variable variances, and setting the path coefficients to one,
you can mimic the LISREL output.
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The preceding discussion covers what is generally the
reason for "different" results from LISREL and EzPATH.
Generally it is possible to get virtually identical output from
covariance structure programs for analyses which they can
handle. However, given the vagaries of non—linear
estimation routines, the programs will in general converge to
different solutions. Usually the one with the lower loss
function is the correct solution in that case. Try using the
results from one program as the starting values for the other.
If one program has the correct results, and the other does
not obtain the same discrepancy function value, then the
probiem almost certainly is a faulty model set up on one or
both programs.

E. Watch Out for the Lonesome Latent Variable!

One of the nastiest problems ever encountered by a student
of mine using EzPATH kept her puzzied for more than an
hour. It turned out that, embedded in her output, was a path
to a latent variable which she had spelled incorrectly. This
created a unique latent variable which was basically sitting
there by itself. EzZPATH had no way of knowing that she
didn’t intend for the variable to exist. The result was that a
key path was missing, and her results were bizarre. Chances
are sometime we’'ll get a warning message for such things
built into the EzPATH parser.

F. Entering A Covariance or Correlation Matrix.

-When you use EzPATH to try to replicate a published
analysis, you will, of course, want to enter the covariance or
correlation matrix. An example of how this is done, using the
DATA module, is on page 291 of the SYSTAT manual.

G. Program Limitations

EzPATH Version 1.0 is designed to handle problems with 40
or fewer manifest variables, and 150 or fewer unknowns.
Moreover, the total number of relationships cannot exceed
190. In addition, there are limitations on the amount of array
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workspace available. If any of these limitations is exceeded,
the program will issue an error message.

Keep in mind that some parameterizations of a model
require more paths than others. The classic case is the
parameterization of a unique variance. EzZPATH allows you to
express this with a single path with a regression coefficient,
(the latent variable’s variance will be fixed at one by default),
or two paths, one involving a regression coefficient of one,
the other representing a latent variable variance.

In other words, this

(F)-->[X]
(F)-1-(F)

is equivalent to this
(F)-1->[X],

although the value of coefficent 1 in the first version will be
the square of the value in the latter.

If you try to directly represent results from LISREL, you will
find yourself using the less efficient parameterization. This
less efficient parameterization might cause you to exceed a
program limitation, in which case you could revert to the
standard EzPATH format.
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Appendix — SAVE File Format

The normalized residuals for the entire covariance matrix are
saved in a file called <file name>.RES.

This file is formatted as follows, There are three variable names in
the file: ROW, COLUMN, and RESIDUAL. ROW refers to the row
number for the residual, COLUMN refers to the column number,
and RESIDUAL is the residual value.

The estimated variance/covariance matrix is saved in a SYSTAT
COV file called <file name>.HAT.

This file contains the estimated variance/covariance matrix, saved
as a rectangular COV file, with variable names identical to those in
the SYS file being analyzed.
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